Could be default location for Urban Centre if KDFN chooses not to

VALLEYVIEW

Valleyview South

Master Plan

Draft Final Report

March 2024

Approximate Urban Centre location; access via new north-south collector road Mile Hill Road

Prepared by:

MCINTYRE

In partnership with:

FUTURE MIXED

COMMERCIAL

Executive Summary

The City of Whitehorse is focused on ensuring all residents have access to a safe place to call home. To meet this demand, the City is looking at a number of ways it can increase the amount of housing in the community. The "Valleyview South" area, located between the Valleyview, McIntyre, and Hillcrest neighbourhoods, has long been envisioned by the City for residential development. To ensure the area is developed in a logical, integrated manner, the City undertook a land use Master Plan for this new residential neighbourhood.

The Plan sets out a vision, objectives, and associated policies to guide decisions and articulate clear direction on land use and development in the Plan area. The Plan content was informed by: a review of relevant City plans, policies and bylaws; supporting studies and technical reviews; landowner, community, stakeholder, and government consultation; and a thorough understanding of the Plan area. To arrive at a preferred land use concept and report for the Plan area, the City's consultant went through multiple iterations of information gathering, conceptualization, and engagement.

The Plan envisions the development of a mix and range of housing and public spaces in Valleyview South, as well as a mixed-use Urban Centre situated across Hamilton Boulevard from the Canada Games Centre. To fulfill the Official Community Plan's density requirements for the Urban Core, a diverse mix of low, medium, and high-density housing is proposed, with a minimum of 1,700 units anticipated within the planning area. The Plan envisions key transportation enhancements, including a new highway access at Range Road and accompanying transformation of the eastern portion of Sumanik Drive into a multi-use trail, and improvements to intersections along Hamilton Boulevard. The Plan also envisions a robust network of multi-use pathways throughout the new neighbourhood to connect residents with the City's existing active transportation network. These changes aim to enhance both vehicular and active transportation modes, fostering improved accessibility and connectivity for the community.

To develop this new neighbourhood, significant site preparation will be required. The Plan recommends significant grading, including gravel removal, to establish a gradual slope averaging 2-3% from the Alaska Highway to Hamilton Boulevard. Grading is needed to provide highway access, maximize the developable area, and facilitate efficient water, sanitary, and stormwater infrastructure; however, the City recognizes the potential negative impacts to existing residents of the area from prolonged gravel extraction activity. As such, the Plan includes a strategy in which site preparation and development progress will be coupled in discrete phases and linked to the development approval process.

This Master Plan will serve as the guiding document for the City and the Valleyview South development partners as they proceed to implementation in the years ahead. Its land use strategies, transportation and servicing prescriptions, mitigation measures, and implementation strategies will be the means through which the vision of a well-integrated, vibrant, and sustainable Valleyview South neighbourhood is ultimately realized.

Table of Contents

1.0	INTRODUCTION	1
1.1	MASTER PLANNING PROCESS	2
	1.1.1 Phase 4 – Master Planning	2
1.2	MASTER PLAN APPLICATION	4
20		F
2.0		5
2.1	PARCEL LEGAL DESCRIPTIONS AND SIZE	5
2.2	SITE CONDITIONS AND VALUES	6
	2.2.1 Site History	6
	2.2.2 Geology, Hydrology, and Topography	8
	2.2.3 Ecology	9
	2.2.4 Aspect and Views	9
	2.2.5 Trails	10
	2.2.6 Contamination	10
~ ~	2.2.7 Heritage Resources and Values	11
2.3	LAND DESIGNATION, ZONING, AND USES	12
2.4	RELEVANT POLICIES, PLANS, AND STUDIES	13
	2.4.1 City of Whitehorse	13
o -	2.4.2 Kwanlin Dün First Nation	14
2.5	ADJACENT LAND USES	15
	2.5.1 Erik Nielsen Whitehorse International Airport	15
	2.5.2 Wasson Place and Burns Road	15
~ ~	2.5.3 Adjacent Neighbourhoods	15
2.6	EXISTING INFRASTRUCTURE AND SERVICES	16
	2.6.1 Transportation	16
	2.6.2 Water	17
	2.6.3 Wastewater	17
	2.6.4 Stormwater	18
	2.6.5 Power and Communications	18
3.0	CITIZEN AND RESIDENT PERSPECTIVES	19
3.1	PRE-MASTER PLAN INPUT	19
3.2	FALL 2022 - VISIONING	20
3.3	JANUARY 2023 – DESIGN CHARRETTE	20
3.4	SUMMER 2023 – LAND USE SCENARIOS	21
4.0	NEIGHBOURHOOD VISION	24
5.0	LAND USE DESIGNATIONS	26
5.1	LAND USE SUMMARY	26
5.2	RESIDENTIAL LAND USE	26
	5.2.1 Overview	26
	5.2.2 Policies	29
5.3	MIXED USE – RESIDENTIAL/COMMERCIAL	30

	5.3.1 Overview	30
	5.3.2 Policies	32
5.4	COMMERCIAL/INDUSTRIAL	33
	5.4.1 Overview	33
	5.4.2 Policies	33
5.5	PUBLIC/INSTITUTIONAL	34
	5.5.1 Overview	34
	5.5.2 Policies	34
5.6	PARKS, OPEN SPACE, AND TRAILS	34
	5.6.1 Overview	34
	5.6.2 Policies	35
6.0	INFRASTRUCTURE AND SERVICING	37
6.1	TRANSPORTATION NETWORK	37
	6.1.1 Overview	37
	6.1.2 Policies	38
6.2	WATER SERVICING	40
	6.2.1 Overview	40
	6.2.2 Policies	42
6.3	SANITARY SERVICING	42
	6.3.1 Overview	42
	6.3.2 Policies	43
6.4	STORMWATER	44
	6.4.1 Overview	44
	6.4.2 Policies	44
6.5	POWER AND COMMUNICATIONS	45
	6.5.1 Overview	45
	6.5.2 Policies	45
6.6	SITE GRADING/GRAVEL EXTRACTION	46
	6.6.1 Overview	46
	6.6.2 Policies	46
7 0		40
7.0		48
7.1	SUBDIVISIONS	48
	7.1.1 Overview	48
	7.1.2 Policies	48

7.2.1 Overview
7.2.2 Policies
7.3 DEVELOPMENT COORDINATION AND PHASING
7.3.1 Overview

REGULATORY PROCESSES

7.3.2 Policies

7.2

7.5

- 7.4 DEVELOPMENT FINANCING
 - 7.4.1 Overview
 - 7.4.2 Policies
 - NEXT STEPS
 - 7.5.1 Overview

 - 7.5.2 Policies

49

49

53

53

53

54

55

55

56

56

56

56

REFERENCES

APPENDIX A. SITE CONTEXT MAPS	60
A1. Site Ownership	
A2. Environmental & Special Places	
APPENDIX B. MASTER PLAN CONCEPTS	63
B1. Land Use Plan	
B2. Transportation	
B3. Servicing	
B4. Phasing Concept	
APPENDIX C. NEIGHBOURHOOD CHARACTER EXAMPLES	68
APPENDIX D. TRANSPORTATION IMPACT ASSESSMENT	75

List of Tables

Table 1. Design charrette agenda	3
Table 2. Valleyview South parcel legal descriptions and size	5
Table 3. Areas of Environmental Concern on Lots 429/430	10
Table 4. Valleyview South Land use summary	26
Table 5. Valleyview South minimum density, housing units, and population projections	28
Table 6. Recommended zoning for residential land use designations	29
Table 7. Recommended zoning for Mixed-Use Residential/Commercial land use designation	32
Table 8. Projected traffic generation and impacts from Valleyview South development	37
Table 9. Overview of subdivision and disposition challenges and potential solutions	48
Table 10. Recommendations for known and potential contamination issues	50
Table 11. Proposed Valleyview South development phases	54

List of Figures

Figure 1. Geographic context of Valleyview South planning area in Whitehorse	1
Figure 2. Valleyview South Master Plan process	2
Figure 3. Valleyview South Master Plan Phase 4 milestones and timelines	2
Figure 4. Aerial view of Valleyview South planning area and approximate parcel locations	6
Figure 5. 1963 air photo of WUTF and Valleyview South area	7
Figure 6. Valleyview South area 2040 OCP designations	12
Figure 7. Valleyview South area zoning	13
Figure 8. Conceptual Urban Centre location for Valleyview South in 2040 OCP	13
Figure 9. Proposed commercial-industrial development in the southeast corner of Lot 429	15
Figure 10. Proposed Valleyview South active transportation connector	16
Figure 11. Current transit routes around planning area	17
Figure 12. Results from the open-ended question in the November 2022 engagement for VSMP	21
Figure 13. VSMP draft neighbourhood concepts 1 and 2 presented to the public in June 2023	22
Figure 14. Rendering of a commercial village on C-117B and residential uses on C-141B from the January 2023 design charret	te 31

57

1.0 Introduction

The City of Whitehorse ("City") Planning and Sustainability Services Department led the development of a master plan for the area located between the Valleyview, McIntyre, and Hillcrest neighbourhoods, referred to as "Valleyview South". The Valleyview South contains a mix of private, government, and First Nation land parcels. It has long been envisioned by the City for residential development. Refer to Figure 1.

Figure 1. Geographic context of Valleyview South planning area in Whitehorse

The Valleyview South Master Plan (VSMP) is intended to:

- Help accommodate the growth of Whitehorse's population and needs of future residents;
- Ensure the new development will fit in with existing neighbourhoods;
- Integrate the area with existing infrastructure, such as roads and water/sanitary systems;
- Identify and protect key environmental features;
- Provide direction on what types of land uses will occur, and where;
- Identify major future roads and active transportation corridors;
- Identify open space, parks, and trail connections; and
- · Provide recommendations on other relevant aspects of future development.

1.1 Master Planning Process

A multi-disciplinary team led by Groundswell Planning was retained by the City in September 2022 to undertake the Master Plan. From the outset, Groundswell established a process that considered each major landowner/future developer as "partners" and sought their input and agreement at each milestone along the way. All partner discussions were grounded in the team's technical advice and input from the public. While the development partners (i.e., landowners with a desire to develop in the future) were the key contributors to the Master Plan, other landowners who have no development plans were included and kept aware of progress to ensure the existing and planned land uses on their parcels were factored in.

3 **PROJECT INITIATION & RESEARCH & ANALYSIS** COMMUNITY VISIONING MASTER PLANNING ORIENTATION 10. Hold design charrette to 1. Project start-up 4. Review information and 7. Develop an Engagement/ develop two land use meeting visit site **Communications Strategy** concept options 5. Compile background 2. Coordinate Team and 11. Develop a brief analyzing 8. Engage First Nation report and maps gather information both options in detail citizens, neighbourhood 6. Meet with landowners associations and public 12. Engage community and development 3. Meet with landowners around the two options and development partners partners 9. Summarize results 13. Develop Master Plan for preferred concept and present to City Council **SEPT - OCT 2022** NOV 2022 - JAN 2023 OCT 2022 - JAN 2023 JAN 2023 - FEB 2024

The planning process took 17 months and was organized into four phases, as shown in Figure 2 below.

Figure 2. Valleyview South Master Plan process

1.1.1 Phase 4 – Master Planning

The final phase (Phase 4) of the process included most project milestones and decision-making, starting with a January 2023 design charrette and ending with the adoption of the Plan by Council in May 2024. Refer to Figure 3 for an overview of timelines and milestones. Refer to Section Phase 4 – Master Planning1.1.1 for more information on public engagement.

Figure 3. Valleyview South Master Plan Phase 4 milestones and timelines

• January 2023 Design Charrette

A three-day design charrette was held from January 25-27, 2023 at the City's Public Safety Building. The charrette involved all the VSMP development partners, technical experts from various City departments, urban design consultants, and residents of Hillcrest and Valleyview. The agenda is shown in Table 1 below.

Table 1. Design charrette agenda

Day 1 am	Introductions & orientation		
	 Setting current context, visioning, and 		
	strategies ("Now, Wow, How" exercise)		
Day 1 pm	 Design team working session 		
Day 2 am	Design team working session		
Day 2 pm	• Mid-course pin-up – participant review of		
	team's work		
Day 3 am	 Design team working session 		
Day 3 pm	• Final pin-up – participant review of second		
	round of team's work		

The charrette resulted in two concepts which the City and development partners evaluated against a range of success criteria they had established jointly. The final round of participant feedback provided the "jumping off" point for the team's continued work.

Concept Options

The planning team continued to elaborate on the two concepts, reconvening City staff and development partners in April 2023 to work through specific design issues.

The team created a Scenario Brief that provided an overview of the two concept options and compared their approaches to land use, transportation, servicing, parks/greenspace, grading, and other design and implementation elements. The draft brief and concept options were reviewed by the City staff and development partners in early June, prior to the start of the second round of public engagement.

Final Concept

City staff and development partners reconvened in late July 2023 to review the outcomes of the June engagement on the two concept options. The group

Images above: Scenes from the January 2023 design charrette with VSMP partners and representatives of Hillcrest and Valleyview neighbourhood associations

discussed potential design responses to key public input and provided direction to the team on the elements of a single preferred concept. The draft final concept and Master Plan report were distributed for a final round of review and feedback from City staff and the development partners in December 2023. The resulting final Master Plan was shared with City Council, which held a public input session in April, and was approved in May 2024.

1.2 Master Plan Application

This Master Plan establishes the framework for this future neighbourhood by articulating:

- The location, configuration, and area for different land uses and the associated recommended zoning;
- The types, density, and resulting population for residential development;
- Direction for parks and open space;
- The pattern and alignment of a multi-modal transportation network;
- Desired neighbourhood character;
- A conceptual scheme for servicing the development with water, sanitary, stormwater, power, and grading;
- Implementation considerations; and
- Other items pertinent to development.

The completion of the Master Plan marks a key milestone in the history of the Valleyview South development area and the first shared achievement of the multiple landowners involved. The Plan will be the framework for the individual VSMP partners to proceed with in a coherent and coordinated manner. The anticipated next steps for the Plan's implementation include:

- Follow-up environmental and heritage investigations;
- Preliminary and detailed grading and engineering design;
- Regulatory approvals and associated assessments under the Yukon Environmental and Socioeconomic Assessment Act;
- Rezoning; and
- Continued process and coordination discussions between the landowners/partners.

It should be noted that the Master Plan report focuses more on the desired future state of the Valleyview South area, not the current state. Readers are encouraged to refer to the Valleyview South Master Plan Background Report for a comprehensive overview of the study area and its development context.

Note: The policies set out in this Master Plan are intended for implementation by the City; however, they also guide Valleyview South landowners in orienting their development plans for success and approval by the City.

2.0 Neighbourhood Context

Note: The following section is an abridged version of the Valleyview South Master Plan Background Report.

2.1 Parcel Legal Descriptions and Size

The planning area consists of 14 surveyed land parcels, two unsurveyed parcels, three surveyed roads, and numerous easements totaling approximately 114 hectares (ha). Refer to Table 2, the Ownership Map in Appendix A1, and Figure 4. Note that rights-of-way and easements are not included in the table.

Parcel	Legal Description	Size (ha)
Lot 66	LOT 66 Valleyview Subdivision	3.60
	76832 CLSR YT Plan 95-12 LTO YT	
Unsurveyed area	None	2.67
C-117B	LOT 1225 QUAD 105D/11	5.23
	96822 CLSR YT Plan 2010-0048 LTO YT	
C-141B	LOT 1228 QUAD 105D/11	5.01
	96822 CLSR YT Plan 2010-0048 LTO YT	
Lot 12	LOT 12 Valleyview Subdivision	4.12
	76359 CLSR YT Plan 94-64 LTO YT	
Lot 431	LOT 431 GROUP 804	2.93
	51614 CLSR YT Plan 26170 LTO YT	
Lot 262-2	LOT 262-2 GROUP 804	3.34
	51139 CLSR YT Plan 25056 LTO YT	
C-30B	LOT 1190 QUAD 105D/11	12.32
	88070 CLSR YT Plan 2003-0223 LTO YT	
Lot 427-1	LOT 427-1 GROUP 804	1.58
	57304 CLSR YT Plan 35408 LTO YT	
Lot 427	LOT 427 GROUP 804	0.36
	51614 CLSR YT Plan 26170 LTO YT	
Lot 438	LOT 438 GROUP 804	0.51
	51614 CLSR YT Plan 26170 LTO YT	
Lot 2	LOT 2 QUAD 105D/11	0.58
	64319 CLSR YT Plan 52219 LTO YT	
Lot 426	LOT 426 GROUP 804	2.80
	51614 CLSR YT Plan 26170 LTO YT	
Unsurveyed area	None	19.91
Lot 429	LOT 429 GROUP 804	18.56*
	51614 CLSR YT Plan 26170 LTO YT	
Lot 430	LOT 430 GROUP 804	29.90
	51614 CLSR YT Plan 26170 LTO YT	
Road (#8034222)	51139 CLSR YT Plan 25056 LTO YT	0.06
Road (#8006307)	51614 CLSR YT Plan 26170 LTO YT	0.07
Road (#8006308)	51614 CLSR YT Plan 26170 LTO YT	0.08
1	TOTAL	113.63

Table 2. Valleyview South parcel legal descriptions and size

*Does not include a 7.3 ha portion that is being planned and developed separately.

Figure 4. Aerial view of Valleyview South planning area and approximate parcel locations (Credit: Alistair Maitland)

2.2 Site Conditions and Values

2.2.1 Site History

• First Nation History and Occupation

The Valleyview South Master Plan study area is located within the traditional territories of the Ta'an Kwäch'än Council (TKC) and Kwanlin Dün First Nation (KDFN). These first people refer to the Whitehorse section of the Yukon River as Chu Nij Kwan, which translates to "water, face, moonlight". Local Southern Tutchone oral history confirms inhabitation of the Ta'an Kwäch'än in the immediate section of Chu Nii Kwan/Yukon River to Täa'an Màn/Lake Laberge including the river valley and the surrounding mountains Thè Mbay (Grey Mountain) to the east, Thay T'aw (Haeckel Hill) to the northwest, and T'si Ma (Golden Horn Mountain) to the south.

Southern Tutchone oral history, archaeological, and geological research all indicate that the ancestors of modernday First Nation citizens arrived in the Yukon River valley shortly after it became deglaciated, around 10,000 years ago. New plant and animal species made the post-glacial landscape a suitable environment for human occupants, and salmon drew people to the river to fish, gather, and visit. Generations of Coastal and Inland Tlingit, Kaska, Han, Gwich'in, Northern Tutchone, and other First Nations came to trade, feast, fish and gather with the Tagish Kwan¹ and Southern Tutchone in the Whitehorse area.

¹ There are various spellings of this word. The 2040 City of Whitehorse Official Community Plan uses "Ch'an".

These millennia-long patterns of occupation and use of the Yukon River valley in Whitehorse by first peoples largely continued after the arrival of non-Indigenous people in the Yukon in the 1860s. The Gold Rush, establishment of post-Gold Rush rail and river-based transportation networks, and the 1942 construction of the Alaska Highway were key milestones in a broader geographic, economic, political, and cultural marginalization of First Nation people that saw them displaced from traditional use areas. Continued growth and urban expansion forced First Nations to move and relocate several times as new neighbourhoods took the place of hunting and gathering areas along the Alaska Highway, including the planning area.

In 1987, the Ta'an Kwäch'än re-established themselves as a distinct First Nation, formally separating from KDFN in 1998. In 2002, TKC signed its final and self-government agreements and assumed ownership and authority over 796 square kilometres (km2) of Settlement Land – including parcel C-30B, located adjacent to the Alaska Highway in the eastern portion of the study area. KDFN signed its land claims agreements in 2005, assuming authority for over 1036 km2 of Settlement Land, including C-117B and C-141B, located within the study area to the north and south of Sumanik Drive.

• Whitehorse Upper Tank Farm

The Canol (short for "Canadian Oil") refinery opened in 1944 in the Marwell area of Whitehorse. The intent of a related pipeline between Skagway and Whitehorse (part of Canol No. 2) was to deliver gasoline barged to the Alaskan port to the Yukon.

The Whitehorse Upper Tank Farm (WUTF) was established west of the newly expanded Whitehorse airfield, with several pipelines (from Skagway and to the refinery) connecting to it and the 24 large tanks used for the storage of gasoline, furnace oil and arctic stove oil (EBA, 1999). The end of World War II and withdrawal of U.S. military interests saw a complicated

Figure 5. 1963 air photo of WUTF and Valleyview South area

chain of Canol No. 1 and 2 asset purchases and transfers involving the Canadian and U.S. governments and White Pass and Yukon Route Company. In 1958, the Canadian government accepted transfer of the portion of the Skagway pipeline located within Canada and leased a portion of the tank farm to White Pass (Midnight Arts, 1999). Figure 5 shows the general footprint of the WUTF and surrounding neighbourhoods after this time.

In 1958, Yukon Pipeline Limited purchased the tank farm and operated it as a light petroleum storage facility for the Yukon until 1995, when it applied to the National Energy Board (NEB) to abandon the facility because it was no longer economically feasible to operate (Golder Associates, 2013). Yukon Pipeline Limited was granted an order to abandon, subject to a plan of remediation, in 1996. Dismantling of the storage tanks and the pipeline that serviced the site was completed in 1997, and a Plan of Restoration was submitted to the NEB in 1999. The property was acquired by private owners in the late 1990s (Whitehorse Star, 2012) and released by the NEB in 2009 as meeting the Plan of Restoration for current usage. Environment Yukon formally designated the WUTF site as a contaminated site in 2011 to have greater oversight of remediation. That remediation has now progressed to the point that only a portion of the tank farm site remains designated.

2.2.2 Geology, Hydrology, and Topography

The Valleyview South study area is largely comprised of a broad, gently rolling terrace on the west side of the Yukon River valley. The terrace is at about elevation 722 metres above sea level and is bounded to the east side where the land slopes down about 25 metres to the Erik Nielsen Whitehorse International Airport terrace level.

The development area is generally flat to gently rolling but is punctuated by a north-south trending line of closed depressions, or post-glacial "kettles". The central depressions and eastern edge of the study area are steeper, with slopes of 5 to 15% or more. Locally there may be steep slopes (>15%) from gravel excavation activities, including on the southeast corner of Lot 429 and a residual gravel excavation depression on Lot 430 on the western edge of the property near Hamilton Boulevard.

The largest of the (typically) six-to-eight-metre-deep kettles is located just north of the Hillcrest subdivision. This depression is about 20 metres deep and hosts a small environmentally sensitive intermittent pond/wetland area that receives the local drainage. This is the only surface water feature in the study area.

Groundwater is relatively deep, ranging from 20 to 30 metres below ground surface (Golder, 2020). It flows from west to east through the highly permeable sands and gravels underlying the study area, emerging as a series of springs in Baxter's Gulch (located east of the Alaska Highway) that forms the headwaters of a small creek that flows to the downtown and ultimately, Yukon River. To some degree, groundwater and run-off will also flow south from the Valleyview South area towards the Hillcrest subdivision and surface water may pool within the former Whitehorse Upper Tank Farm (Golder Associates, 2013).

Extensive drilling of the site over the past 45 years shows the site is underlain by a thick sequence of sand and gravel, with increasing sand at depth. This surficial geology creates a well-drained surface with no surfacewater features (other than the kettle pond). Along the east side of the area, silt is encountered at depth. Overall, the geological conditions are favourable to development, with well drained soils and natural features.

Eastward panorama of topography of upper terrace (Lots 429 and 430)

2.2.3 Ecology

Some portions of the study area have been previously cleared of vegetation, especially the WUTF area. For remaining areas, the vegetation is typical of low elevations of the Yukon Southern Lakes Ecoregion and largely consists of Lodgepole Pine with Trembling Aspen, White Spruce and some Paper Birch, with various understories such as feathermoss, lichen-grass, Labrador Tea, and willow (Golder Associates, 2013). The forested sections include a myriad of informal recreational paths and trails, particularly in the southwestern corner adjacent to Hillcrest and Granger.

Anthropogenic disturbances such as noise, vehicle and people movements mean most larger animals stay away from the area although the occasional occurrence of these species should never be ruled out. Wildlife such as Red Fox, Coyote, Red Squirrel, Pine Marten and Least Chipmunk can likely be found, along with a variety of small mammals such as voles and mice.

No Wildlife Key Areas or species of conservation concern overlap the study area (GeoYukon, 2022). The area with the highest wildlife habitat value is likely the small wetland located immediately north of Hillcrest in the unsurveyed Government of Yukon parcel. Another feature of note is the north-south forested gulley that straddles Lots 429 and 430 for an approximate distance of 600 metres. Areas designated Greenspace in the Official Community Plan are not known or observed to have particular sensitivity or ecological values.

Wetland near Hillcrest

2.2.4 Aspect and Views

Northerly aspects are the most dominant and are distributed throughout the planning area. Southerly and westerly aspects are also found throughout but are generally more prevalent in the southwestern corner, centre, and western areas. Easterly aspects are more concentrated along the lower elevation areas adjacent to the Alaska Highway.

The most significant and expansive view is found along the southern boundary of the planning area between Lots 429 and 430, where the access road intersects the forested gulley feature and there is a view of Grey Mountain. Lot 262-6 also offers views towards Lake Laberge and the mountains to the east of it.

View of Grey Mountain from Lots 429/430

2.2.5 Trails

Informal trails within the Valleyview South area are predominantly old roads and doubletrack (i.e., all-terrain vehicle width), with limited amounts of singletrack (i.e., hiking width). The highest concentration of trails is in the greenspace areas adjacent to Hillcrest/Granger and Valleyview. There is a significant network of City singletrack trails located in and around the "Mount Mac" trail network; during the winter months, the Whitehorse Cross Country Ski Club holds a license of occupation to the cross-country ski trails and only the City's singletrack trails are available for public use free-of-charge.

2.2.6 Contamination

Trails northwest of Hillcrest

• Whitehorse Upper Tank Farm (Lots 429 and 430)

The Whitehorse Upper Tank Farm (WUTF) operation consisted of 24 above ground storage tanks on raised sand pads in unlined earthen berms and used for the storage of regular gasoline, furnace oil, and arctic stove oil (EBA, 1999). The local geology was highly conducive to vertical migration of spilled and leaked hydrocarbon products from WUTF operation. The first of many investigations to delineate the resulting contamination occurred in 1996, and groundwater monitoring continues to this day. From the outset, the intent was to remediate the property to meet numerical standards under the Contaminated Sites Regulation. However, it was also recognized that the area around the eastern property line of Lot 429 may require a risk-based approach to remediation, versus a numerical one.

The 2013 Plan of Remediation was accepted and implemented, resulting in the first Certificate of Compliance for the northwestern corner of the former WUTF in 2015. The second certificate was issued in 2020 for most of the central, western, and southern portions of the WUTF site. Both certificates were issued with a disclaimer that multiple locations located within the lands covered by them have hydrocarbon concentrations above Contaminated Sites Regulation residential land use standards at depths

greater than three metres below current ground surface, as follows:

"This Certificate of Compliance will no longer be valid if the elevation of ground surface changes such that the depths of these exceedances are no longer greater than three metres below the surface of the land, as the site will be considered contaminated."

These disclaimers effectively mean that future site grading needs to consider the locations noted in the certificates and, ideally, avoid bringing the new grades to within three metres of the elevations at which subsurface contamination is still present. These nine locations, or Areas of Environmental Concern, for Lots 429/430 are shown in Table 3 and on the Environmental and Special Places Map in Appendix A2.

In practice, the grading issue does not pose a significant constraint to development. Government of Yukon (YG) staff advised that should the site grading plan result in a "trigger" of the 3m buffer,

Area of Environmental Concern	Depth of Contaminatio n (metres)
С	5.0
CC	9.0
D	12.0
G	20.0
K	4.5-12.0
L	5.0
N	6.0
Q	6.0
R	4.0

Table 3. Areas of Environmental Concern (AECs) on Lots 429/430 (Source: Golder Associates, 2020) targeted excavation and confirmatory sampling could be carried out in those specific locations with the objective of further remediating to meet the residential standard (Schilder, pers. comm).

The status of remediation, nor timelines for completion, of the remaining eastern portion of Lot 429 (mentioned above) under Ministerial designation is not well understood at present. Groundwater monitoring wells continue to show contamination above applicable standards with various hydrocarbon parameters (Schilder, pers. comm).

• Other Properties

While Lots 429 and 430 were the focal point of WUTF activities, associated pipelines were or are still believed to be present on neighbouring properties. Areas of interest include a right-of-way straddling the City's Lot 427 that crosses Lot 426, and another that crosses Lot 12 and C-141B before terminating at the Lot 430 parcel boundary (while the latter is not specified as a pipeline right-of-way in GeoYukon, partially uncovered pipe is visible around Lot 430/C-141B and this is almost certainly a section of historic pipeline). Pipeline-related contamination was encountered on Lot 426 in 2021 (Idrees, pers. comm); in 2005, approximately 30 - 40 aged, rusty barrels were found on the lot filled with asphalt or roof tar.

A Phase 1 Environmental Site Assessment was undertaken for Lot 262-2 in 2005 that noted a 40-year old underground storage tank and recommended follow-up investigation. YG staff commented that 17 years is a long interval and recommended that this assessment be updated to reflect current conditions and conform with industry standards (Schilder, June 30). Further, the property has been used for snow storage since that time, which could potentially add new sources of contamination.

Residual pipelines and/or WUTF infrastructure are only one potential concern for adjoining properties; the other is off-site migration of contamination in soils and groundwater across property boundaries. Based on the local geology of the site, off-site migration of contamination that has reached the groundwater table is understood to be the more likely issue of concern (note that groundwater flows west to east, with discharge emerging as a series of springs in Baxter's Gulch). YG Environment staff identified C-30B and Lot 262-2 as being potentially vulnerable.

2.2.7 Heritage Resources and Values

Archaeological Resources

In preparation for remediation activities, an archaeological overview assessment was conducted in 2013 by Golder Associates on the former Whitehorse Upper Tank Farm (WUTF), as well as the C-30B parcel. The overview confirmed the presence of one previously registered archaeological site, JeUs-30, just outside of the southwest corner of the tank farm property and external to the planning area boundaries. The report deemed the potential for undocumented, subsurface archaeological sites and culturally modified trees within the former WUTF to be low; however, it identified the eastern boundary of the property, as well as C-30B, to have high potential for undocumented heritage resources given their relative proximity to the Yukon River, Baxter's Gulch, and JeUs-30.

Based on their review of the Golder report, Kwanlin Dün First Nation and Ta'an Kwäch'än Council staff have indicated that, from their perspectives, it has gaps and limitations that need to be understood before it is used as a reliable source of recommendations for development. Discussions with the City will need to continue to ensure that broader heritage values for the area have been duly considered as development proceeds.

Historic Resources

Two known historic sites in the study area have been documented by Government of Yukon (YG) Archaeology Branch staff. The first is a cinderblock bunker located on Lot 426 and is registered in the Yukon Historic Sites Inventory and is believed to have served as a storage function for the WUTF (Ibid). Potential alterations to this lot would likely trigger a Historic Resources Impact Assessment to provide more information on the extent of impacts and appropriate mitigation measures.

The second site is a wood structure located on Lot 2 that is believed to form part of one of several World War II era sand bunkers found in the area (Golder, 2013). Because this resource is located on private property, YG is unlikely to include it in the inventory unless the owner provides access and permission to document it.

Concrete bunker on Lot 426

2.3 Land Designation, Zoning, and Uses

The 2023 City of Whitehorse Official Community Plan (OCP) designates the planning area as primarily Residential – Urban (refer to Figure 6). Section 15.18 of the OCP establishes the purpose of Residential – Urban lands to "accommodate a wide range of residential housing forms and compatible uses, located primarily within the Urban Containment Boundary."

Under the City's current Zoning Bylaw, most of the area is designated Future Planning (or First Nation – Future Planning), and the unsurveyed piece is zoned PG – Greenspace. Refer to Figure 7.

The planning area hosts a limited but diverse range of land uses currently. The northwest and southwest portions serve as well-used neighbourhood greenspace for adjacent residents (including the Valleyview neighbourhood park), while other undeveloped and unoccupied parcels receive relatively little visitation. Land use in the former Whitehorse Upper Tank Farm (WUTF), or Lots 429 and 430, has been limited to contaminated remediation activities (and unauthorized trail use) in recent years. Parcels in the southeast portion of the planning area provides a place of worship and telecommunication services.

Figure 6. Valleyview South area 2040 OCP designations (Source: City of Whitehorse, November 2022)

2.4 Relevant Policies, Plans, and Studies2.4.1 City of Whitehorse

• 2040 Official Community Plan

The City's Official Community Plan (OCP) outlines the community's vision for growth and sustainability to 2040. It serves as a guiding document for City administration and Council in making development decisions in the city. The OCP directs half of all new housing development to the Urban Core, which includes the Downtown, Riverdale, Marwell, Takhini, and the Valleyview South area.

The OCP contains numerous policies that directed the development of this plan, noted in parentheses. Firstly, master plans must adhere to the OCP (13.23) which seeks to promote the redevelopment of brownfield sites to enhance efficiency, remediate the environment, and reduce urban sprawl (8.3). Within the Valleyview South area, the OCP conceptually locates an Urban Centre (8.16), which integrates diverse and higher-density land uses (8.17, 8.21) and a mix of community amenities (8.5), while also ensuring a sensitive transition to nearby residential uses (8.18). Refer to Figure 8.

Figure 7. Valleyview South area zoning (Source: City of Whitehorse, 2020)

The OCP also established a minimum gross density of 20 dwelling units per hectare, considering the collective area that includes roadways, utilities, reserves, and public spaces (8.38). To achieve this target, compact developments are prioritized to optimize public services, minimize transportation impacts, preserve wilderness areas, and enhance walkability (8.1). The transportation network further seeks to prioritize active and shared travel modes over personal vehicles (11.2). Additionally, neighbourhood designs must also consider long-term municipal responsibilities (12.19). This Master Plan provides further direction on how the OCP policies should be implemented within the Valleyview South Master Plan area.

Figure 8. Conceptual Urban Centre location for Valleyview South in 2040 OCP

• Trail, Parks, and Recreation Plans

The City aims to improve connectivity and livability. In Valleyview South, the 2020 Trail Plan and 2018 Bicycle Network Plan focuses on creating an East-West path to connect Hamilton Boulevard multi-use path to the Airport trail (Action 13). To enhance cost-effectiveness and connectivity, the Bicycle Network Plan also recommends integrating the AAA pathway with collector roads and improving intersections, especially at Sumanik Drive.

The 2018 Parks and Recreation Plan emphasizes integrating parks and recreation considerations into city planning and development initiatives (Action 12). The goal is to create quality trails for a well-connected, vibrant northern community.

• 2018 Transit Plan

The 2018 Transit Plan promotes integrating public transit and cycling to improve active transportation. It recommends a walking distance of 400 metres to transit stops and proposes spacing stops at 400-metre intervals along roadways for better neighbourhood connectivity. These initiatives aim to create an integrated, accessible, and sustainable transportation network in the community.

• Subdivision Control Bylaw 2012-16

The City requires 10% of land to be dedicated to the City for public use or payment in lieu at the time of subdivision. This allocation is in addition to any required buffers, streets, or lanes. Applications on First Nation Settlement Land collaborate with the City to designate public use areas instead of dedicating land to the City.

2.4.2 Kwanlin Dün First Nation

The Traditional Territory Land Vision (2017) sets out four land-based goals - Community Development, Wildlife, Heritage, and Revenue Generation - for the Traditional Territory and Settlement Lands. The Land Vision recommends that KDFN revenue generation goals be focused primarily on Settlement Lands within Whitehorse. It also directs that revenue generation be balanced with the need for some Settlement Lands to be reserved for community development (KDFN residential use). Opportunities to protect, manage and/or interpret wildlife and heritage values also should be considered.

KDFN's Community Lands Plan (2020) associates C-117B and C-141B with the goals of Community (i.e., residential) Development and Revenue Generation. The Plan also includes a set of policies directly relevant to C-117B/C-141B, including the use of design and construction best practices, consideration of future generations, integration of planning with the City to ensure efficient land use, use of archaeological potential mapping, and pursuit of highest and best use (including leaving lands of ecological or heritage importance in their natural state).

C-117B and C-141B are Type 2 Settlement Land parcels designated for Residential and Commercial use under the KDFN Self Government Agreement Appendix B Part II. This provision allows KDFN to enact laws pertaining to planning, zoning, and land development on them. KDFN is also undertaking a McIntyre neighbourhood planning exercise, the outcomes of which may influence how it ultimately develops its parcels in the Valleyview South area.

2.5 Adjacent Land Uses

2.5.1 Erik Nielsen Whitehorse International Airport

Both federal airport and municipal zoning regulations define the nature of permitted land uses in the vicinity of the airport. Transport Canada is the delegated agency responsible for ensuring administrative compliance with the Whitehorse Airport Zoning Regulations. There are typically three major considerations to future development: electronic zoning, obstacle clearances and noise exposure levels. Electronic zoning is not a concern at the master plan level and can be addressed at a later stage in the development when specific proposals are being reviewed.

The airport reference elevation is 693.8 metres above sea level and the ground rises significantly on the west side of the Alaska Highway to the former Whitehorse Upper Tank Farm terrace elevation, encroaching into the 14R-32L main runway obstacle limitation approach path and west side transitional approach slope. Existing trees and one residence at the corner of Valleyview and Sumanik Drives were found to penetrate these limits in the 2020 Whitehorse Airport Development Plan. Based on that previous assessment, it is possible that – if left at current grades - future development on Valleyview South parcels in the vicinity of the intersection of Sumanik and Valleyview Drives (Lots 12, 262-2, 431 and C-30B) could be affected by the transitional obstacle limitation slopes. Until the updates to the obstacle clearance study, it is not possible to say with certainty whether noise and building height restrictions may be necessary as development occurs within the study area.

Exposure to aircraft noise near airports is a key planning consideration. The Noise Exposure Forecast (NEF) system provides a measurement of the actual and forecasted noise near airport, factoring in the subjective reactions of the human ear to specific aircraft noise stimulus and expressing these as numerical contours (Transport Canada, N.D.) In the most recent 1985 airport noise study, the central and eastern portions of the VSMP area were located within Noise Exposure Forecast contours ranging from 25 to 33 (Transport Canada predicts "sporadic to repeated individual complaints" between 30-35, while a NEF below 30 predicts "sporadic complaints"). The consultants who prepared the 2020 Airport Development Plan concluded that current aircraft noise levels were not significant enough to require preparation of a noise abatement plan.

2.5.2 Wasson Place and Burns Road

The Wasson Place and Burns Road area is a mixed-use commercial industrial subdivision occupied by a range of business and government activities. Wasson Place is the more recent development and its cul-de-sac bulb borderson Lots 426 and 429 to the north. In 2020, Sidhu Trucking applied for and received an OCP amendment to redesignate about 7.3 hectares of Lot 429 from Residential Urban to Mixed-Use Industrial-Commercial to develop serviced lots Refer to Figure 9.

2.5.3 Adjacent Neighbourhoods

The Valleyview South area is surrounded on three sides by existing neighbourhoods: Valleyview to the north, McIntyre to the west, and Hillcrest (and portion of Granger) to the south and southwest. The current character, form and amenities associated with these neighbourhoods helped inform potential gaps and/or synergies for this plan

Figure 9. Proposed commercialindustrial development in the southeast corner of Lot 429 ofl Wasson Place) (Source: 3 Pikas, 2020)

to address and respond to. These neighbourhood are predominantly low-density residential areas, consisting of single-detached and semi-detached houses, as well as some townhouses and low-rise apartments.

2.6 Existing Infrastructure and Services

2.6.1 Transportation

Road Network

The Valleyview South planning area is bounded by the Alaska Highway to the east and Hamilton Boulevard to the west and northwest. The four-lane Alaska Highway is a designated freeway with a posted speed of 60 km/hr through this section. Hamilton Boulevard is designated a major arterial road with a posted speed of 60 km/hr. Sumanik Drive bisects the northern portion of the study area and is designated a collector road with a posted speed of 50 km/hr.

In addition to the above noted transportation corridors, access into the study area includes:

- A surveyed road extending south from the intersection ofValleyview Drive and Sumanik Drive and into Lots 262-2, 429 and 430 (gated at the boundary line of Lots 429/30);
- A right-in, right-out (RIRO) access to Lot 430 across from McIntyre Drive; and
- An unsurveyed road extending from the cul-de-sac bulb of Wasson Place to Lot 2.
- Active Travel Modes

The planning area is located approximately 3.2 kilometres from the downtown core² and there are several major destinations within a 25-minute walk and 20-minute bike ride. This suggests there is moderate to high potential for future residents to use active transportation. The City's 2018 Bicycle Network Plan envisioned a future connection through the Valleyview South area, specifically an All Ages and Abilities (AAA) multi-use pathway to connect from the Hamilton Boulevard MMUP to the Alaska Highway. Refer to Figure 10.

Figure 10. Proposed Valleyview South active transportation connector (Source: City of Whitehorse, 2018)

² Measured from the approximate centre of the planning area to Main Street and Second Avenue.

Transit service currently extends to the periphery of the planning area in all directions. Routes #2, #3, and #6 run along Hamilton Boulevard to downtown, with Route #3 also running through Hillcrest and along the Alaska Highway and Range Road. The closest bus stops are located at McIntyre Drive, by the Canada Games Centre, at the Range Road/Alaska Highway intersection, along Sunset Drive North in Hillcrest, and Burns Road. Refer to Figure 11.

2.6.2 Water

Water supply for the Valleyview South development area will be provided by the Valleyview Reservoir, located immediately west and upslope of the Mount McIntyre Recreation Centre. This large reservoir is a very important component of the City's water system, providing the water supply and pressure to Takhini, Range Point, and Hillcrest subdivisions, and the airport area. The reservoir also feeds water, to booster and pressure control valve stations that services Copper Ridge, Porter Creek, Whistle Bend, Kulan, and Crestview neighbourhoods.

Figure 11. Current transit routes around planning area (Source: City of Whitehorse)

Based on the proximity of the development to the Valleyview Reservoir, there is a significant amount of available water supply to meet the fire protection needs of the new development without requiring a booster station. To benefit from the water supply from the Valleyview reservoir, the Valleyview South water system will need to connect to the water trunkmain west of Valleyview and the trunkmain that parallels the highway and supplies the airport. A looped (versus dead end) watermain system with connections to the watermains west of Valleyview, Hamilton Boulevard and/or Alaska Highway will be required to optimize system reliability, achieve the necessary fire flows, maintain flow in the watermains for freeze protection, and to limit stagnant water that can result in quality issues.

Staff with the City's Water and Waste Services indicated that the Two Mile Booster Station is at or near capacity during peak use times. The results of the City's Water and Sewer Master Plan Update, that was underwayat the time of drafting this report, also inform any potential offsite upgrades that may be required and how (or if) these might impact the Valleyview South area.

2.6.3 Wastewater

The sanitary sewer trunkmain on the west side of Hamilton Boulevard was sized to convey the flows from Copper Ridge, Ingram, Granger, Logan, McIntyre, Valleyview, and Canada Games Centre (CGC). At the time of sewer trunkmain planning and construction, the proposed "Tank Farm" subdivision was also included in the catchment area and designed capacity. The Hamilton Boulevard sewer trunkmain is part of the catchment area for the Marwell Lift Station, which pumps wastewater from the majority of the City's sanitary collection system up to the Livingstone Trail Environmental Control Facility for treatment. The City recently completed maintenance on the Marwell Lift Station and continues to invest in the station and the associated forcemain to meet the needs of the community.

The Valleyview South planning area has no sanitary infrastructure at present. Typical sanitary sewer servicing design for a new development seeks to convey flow using a conventional gravity sewer to minimize pumping requirements. As such, elevations across the planning area have a major impact on the viability of different options to connect future development to the surrounding sanitary infrastructure. Sanitary infrastructure alignments logically follow roadways, given the significant expense and disturbance involved with deep utility construction – not to mention the inability to construct buildings over top. Furthermore, locating utilities in road rights-of-way improves access for maintenance and repairs.

2.6.4 Stormwater

Currently there is no channelized flow from the site and given the granular and free draining nature of the soils found throughout much of the planning area, all the stormwater is currently managed through infiltration into the ground. The new development will alter the surface drainage regime via introduction of impervious surfaces, grading, and direct drainage routes. Best practice dictates that stormwater should match pre-development discharge conditions (i.e., flow rates, water quality, and discharge locations) to receiving environments and waterbodies.

2.6.5 Power and Communications

Major power infrastructure in the planning area consists of the ATCO Electric Yukon distribution lines (4x12 kV lines and 5x25 kV lines) traversing portions of Lots 12, Lot 431, and the entire southern and western boundary of C-141B. To the east of Lot 12, the ATCO distribution lines connect to the distribution and longer transmission network on the east side of the Alaska Highway. These poles are equipped with 3x 25 kV and 5x34 kV lines. From the northwestern corner of C-141B, the powerline goes both west and north. To the west, the powerline transitions to underground and provides power into the McIntyre subdivision (it appears that there is a conduit stub near the intersection of McIntyre Drive and Hamilton Boulevard, presumably to allow for future development). To the north, it transitions to underground and provides power to the Mount McIntyre Recreation Centre, intersection lights at Sumanik Drive and CGC, and streetlights on Hamilton Boulevard north of the intersection.

Based on ATCO's initial analysis, the Arkell Substation, which feeds the Hamilton Boulevard neighbourhoods, can accommodate 3,350kVa of additional load, representing approximately half of the current load in Whistle Bend (March 2022 population of 2500), which amounts to substantially less than the estimated population of Valleyview South. To bridge the gap, ATCO believes that power from the Logan and Arkell substations will be required and both will need to be upgraded with larger transformers to accommodate the demand of the full build-out population. There is potential that new development in the Valleyview South area could be serviced from the Valleyview Drive and Sumanik Drive intersection (for the main electrical feed) and Alaska Highway (for the secondary feed). Supplementary service could be provided from Hamilton Boulevard if required.

The current overhead distribution lines poses numerous development challenges, most particularly on C-141B, where the natural depression occupying the eastern half will require fill to develop. At a minimum, this will necessitate raising power poles; alternately, the lines could go underground.

3.0 Citizen and Resident Perspectives

3.1 Pre-Master Plan Input

In addition to the City's broad engagement around the future of the former Whitehorse Upper Tank Farm and surrounding area, which dates to the early 1980s, there were three public and/or stakeholder engagements involving development in the Valleyview South area in the past decade or so. These are described briefly in the following sections.

• Sidhu Trucking's Community Workshop Series (2012)

These sessions were led by Golder Associates on behalf of Sidhu Trucking for Lots 429 and 430 in 2012. Input from about 50 stakeholder representatives and the public led to six draft principles to shape future development, as follows:

- 1) "Clean up the property so it is safe for human habitation (to numerical standards);
- 2) Create a walkable and transit-oriented neighbourhood;
- 3) Provide a range of housing options to help address affordable housing needs in the community;
- 4) Create an interconnected and accessible network of trails and open space as part of a community-wide pedestrian system;
- 5) Infiltrate rainwater onsite and retain tree canopy and habitat where possible; and
- 6) Work together with neighbours to ensure a collaborative and integrated process."

A range of other ideas and input were heard during this initiative, including a desire for a mixed use commercial area that could accommodate daily needs (e.g., grocery store, clinics, café, etc.), a community gathering place, preservation of views, variety of housing "looks", and many others.

• Kwanlin Dün First Nation Community Lands Plan (2018-19)

During consultation for the Kwanlin Dün First Nation (KDFN) Community Lands Plan, citizens did not identify wildlife and heritage values on C-117B and C-141B. Instead, these parcels were deemed most appropriate for Community (i.e., residential) Development and Revenue Generation.

• Ta'an Kwäch'än Council Administration Building Planning (2019)

In 2019, Da Daghay Development Corporation (DDDC), the arms-length economic development arm of Ta'an Kwäch'än Council (TKC), consulted with TKC citizens around the location and key programming elements for a new administration building/gathering place. Over a series of months and numerous workshops, citizens informed a vision for the development and provided input on preferred locations. C-30B was added to the list of potential locations in the latter phases of the consultation and ultimately was selected as the preferred site (Da Daghay, 2019).

3.2 Fall 2022 - Visioning

Overview

The City, KDFN, and TKC undertook a three-week engagement campaign in November and December 2022 consisting of an online survey and in-person/virtual meetings with community associations of the adjacent neighbourhoods. A core survey was developed for all audiences and additional questions were posed to TKC and KDFN citizens/beneficiaries and/or residents of the adjacent neighbourhoods. The survey was promoted by the City, TKC and KDFN. KDFN mailed out hard copy surveys as well. The City received a total of 685 responses to the online survey.

Results

The key themes arising from engagement included the following:

- o Safe, well-connected active transportation and transit is a high priority;
- The public wants natural greenspaces and trails to be maximized and connected;
- There are diverse opinions about the appropriate level of density, but housing variety and good urban design are broadly supported;
 - o A commercial/mixed use area is important for neighbourhood vitality and reducing vehicle trips;
 - \circ $\,$ A mix of small and medium park spaces is preferred; and
 - o Off-site and on-site traffic circulation is a major issue and opportunity.

Survey participants were given the opportunity to articulate their vision for a successful future neighbourhood in Valleyview South. The responses were reviewed, and key themes recorded and tabulated to create a semiquantitative picture of the sentiments expressed. Density, trails, active transportation, and greenspace were the dominant topics that survey participants touched on in their responses. Refer to Figure 12.

3.3 January 2023 – Design Charrette

Representatives of the Hillcrest, Granger, and Valleyview community associations were invited to participate in a three-day design charrette in late January 2023 (note that Kwanlin Dün First Nation staff represented the McIntyre neighbourhood). Residents of Hillcrest and Valleyview were able to attend, providing valuable input on their neighbourhood interests and responding to the planning team's draft concepts. Refer to Section 1.1.1 for more information on the charrette process.

What would make this a successful neighbourhood?

Figure 12. Results from the open-ended question in the November 2022 engagement for VSMP

3.4 Summer 2023 – Land Use Scenarios

Overview

Incorporating the insights gained from the initial engagement in Fall 2022, the January design charrette, and technical analysis, the City and the development partners worked with the planning team to develop two land use concepts and presented these to the public for comment in June 2023. Refer to Figure 13.

The engagement program consisted of an online survey and two days of in-person open houses which included a session dedicated to residents of the adjacent neighbourhoods. The survey was developed for all audiences and additional questions were posed to "above the airport" neighbourhood residents (regarding traffic). A total of 63 responses to the online survey were received, along with letters from one member of the public and the Valleyview Community Association. 68% of the responses were received from Valleyview residents.

Figure 13. VSMP draft neighbourhood concepts 1 (left) and 2 (right) presented to the public in June 2023

Results

Key results arising from the second round of engagement included the following:

- Concept 2 emerged as the favoured option, drawing approximately 50% agreement from respondents. This support seemed to stem from the retention and provision of larger greenspaces and maintaining the existing elevations. However, key aspects of Concept 1 were broadly supported, including its commercial areas, density, new highway access at Range Road, and lesser peripheral traffic impacts;
- o Valleyview and Hillcrest residents expressed concerns around the active transportation connections and housing variety, as well as locating a public/institutional use east of the Canada Games Centre;
- The responses were in some cases contradictory, particularly where housing density and mix and highway access and grading were concerned (i.e., wanting one while opposing the other even though they are interdependent);
- o The location of different housing densities around the planning area received mixed and inconclusive responses;
- Concept 2's parks and greenspace elements were generally preferred by all respondent groups; however, Valleyview and Hillcrest residents expressed concern about the usability of greenspaces due to the terrain; and
- When asked to suggest mitigation for the loss of greenspace to the west of Valleyview for a public/institutional use, Valleyview residents emphasized the area's importance and generally requested it be left in place.

The feedback portrayed the complexity and diversity of perspectives among the survey participants. Despite the lack of clear and consistent direction, it was concluded that a concept that strategically incorporates elements from both concepts was preferred. Recurring themes were the preference for roundabouts over traffic lights, the careful balancing of greenspace and density, and the potential impacts on existing residents. "Other" comments and responses to open-ended questions echoed this desire for increased greenspace, well-connected transportation networks, and thoughtful high-density housing integration.

While the Summer 2023 direction was incorporated into the final Master Plan, the relatively low response rate and localized origin of respondents meant that the first Visioning survey from Fall 2022, with over 10 times the response rate, continued to play a key role in identifying broad community desires for the new neighbourhood.

4.0 Neighbourhood Vision

The Master Plan articulates its vision and achieves the objectives below through a variety of design, planning, and policy elements, shown in the Land Use Plan contained in Appendix B1. These objectives and elements include:

Objective #1. Integrate the area with the surrounding neighbourhoods, adding this long missing and strategic piece to the "puzzle" of Whitehorse's urban footprint.

- A road and active transportation network that connects residents to surrounding arterial roadways, pathways such as the Airport and Hamilton Boulevard trails, and destinations such as Downtown and the Canada Games Centre;
- b. Sensitive transitions to adjacent neighbourhoods of Valleyview and Hillcrest; and
- c. Introduction of new commercial services, employment nodes, and recreational opportunities to benefit residents of the existing "above the airport" neighbourhoods.

Objective #2. Facilitate coordinated, complementary, and flexible development of land parcels with different ownership contexts.

- a. A blueprint for integrated site preparation and infrastructure development that respects the independence of each landowner while simultaneously recognizing interdependencies;
- b. Flexibility for First Nation governments to pursue development within their unique legal and political contexts and according to their own priorities;

- c. A fair and equitable cost attribution for shared infrastructure; and
- d. Phasing approach that recognizes landowners' different stages of readiness to develop.

Objective #3. Offer a diversity of housing choices that cater to residents with different life stages, incomes, and lifestyles.

- a. A mix of housing choices ranging from single and semi-detached homes to townhomes and apartments; and
- b. Mixed-use development that will allow residents to live, work, and gather in the same place.

Objective #4. Promote quality of life with convenient access to parks, trails, and greenspace.

- a. A system of diverse small to medium-sized parks connected to one another with multi-use paved pathways forwalking and cycling;
- b. Multi-use pathways sited to take advantage of views of the Whitehorse valley and Grey Mountain;
- c. Convenient connections to large natural areas and trail networks in nearby Paddy's Pond/Ice Lake and McIntyre Creek conceptual regional parks; and
- d. Proximity to premier recreational facilities such as the Canada Games Centre, Mt McIntyre Recreation Centre, and Whitehorse Cross Country Ski Club.

Objective #5. Create a compact, walkable neighbourhood and strong connections for all modes of transportation.

- a. An easily navigable collector road pattern that creates short, walkable distances between key neighbourhood destinations and beyond;
- b. Thoughtful design that seeks to avoid non-resident vehicles short-cutting through the neighbourhood;
- c. A comprehensive and strategic active transportation network that minimizes commuting distances to/from Downtown and provides convenient access to nearby destinations, such as the Canada Games Centre;
- d. Closure of a portion of Sumanik Drive to create a more coherent road network and improve active transportation connections; and
- e. A road network that provides access to surrounding arterial roadways, including the Alaska Highway, Hamilton Boulevard, and Sumanik Drive.

Objective #6. Establish vibrant commercial and public services that meet the day-to-day needs of nearby residents and broader needs of a growing city.

- a. One or two small to medium commercial village areas that will provide a range of services and employment opportunities for residents; and
- b. Inclusion of medium to large public facilities that can meet the needs of Ta'an Kwäch'an Council and its citizens, public governments, and the broader Whitehorse public.

5.0 Land Use Designations

5.1 Land Use Summary

The Master Plan for the Valleyview South development area consists of nine different land uses. The predominant uses are residential, which accounts for 50% of the planning area, and parks and greenspace, which accounts for 25%. Mixed-use residential/commercial accounts for 19%, while mixed-use commercial/industrial accounts for less than 1%. Public and institutional uses comprise 6%.

In terms of residential uses, medium density housing occupies the most area at 14%, followed by low density residential 1 (13%), low density residential 2 (12%) and high density (11%). A detailed summary is presented in Table 4 below and illustrated in the Land Use Plan on the following page and in Appendix B1. If an area is hatched with two different land uses, the area could develop as either land use based on more detailed planning.

Land Use	Gross Area (ha)	% of to	tal area*
Low Density Residential 1 (larger lots)	14.6	12.8	
Low Density Residential 2 (smaller	13.4	11.8	-
lots)			49.7
Medium Density Residential	16.0	14.0	
High Density Residential	12.6	11.1	-
Mixed-Use –	21.9	19.2	19.2
Residential/Commercial ³			19.2
Mixed-Use – Industrial/Commercial ⁴	0.62	0.5	0.5
Public/Institutional	6.7	5.9	5.9
Parks and Greenspace ⁵	26.3	23.1	24.8
Environmental Protection	1.9	1.7	24.0
TOTAL	114.0	100.0	100.0

Table 4. Valleyview South Land use summary

*Note that totals may not exactly correspond due to rounding

^oNot including 10% public land dedications for residential, mixed-use, and public/institutional

5.2 Residential Land Use

5.2.1 Overview

Housing Units and Density

The Valleyview South development area will create about 1700 new housing units, ranging from lower density forms such as single detached and duplex to medium and higher density forms such as townhomes and apartment buildings. The intent of the proposed mix and distribution of housing types to foster a diverse community that can accommodate a variety of income groups, household configurations, and age groups, while generally promoting more compact and affordable housing forms. The projected minimum population for

³ Assumes 50% of hatched area in Land Use Plan is designated for mixed-use residential/commercial

⁴ Assumes 50% of hatched area in Land Use Plan is designated for mixed-use commercial/industrial

⁵ Assumes 50% of hatched area in Land Use Plan is designated for parks and greenspace

Two Mile Hill Road Public Service (such as a recreat Could be altern location for Urb Centre if KDFN chooses not to oses no elop or CANADA GAMES CENTRE VALLEYVIEW Alternative to C-117B interior collector and ROW south of Valleyview Dr P Approximate Urban Centre location; access via new north-south collector road aska Highw BAXTER'S GULCH Potential trans emergency eg P FUTURE MIXED COMMERCIAL INDUSTRIAL MCINTYRE ERIK NIELSEN WHITEHORSE INTERNATIONAL AIRPORT ELIJAH SMITH ELEMENTARY HILLCREST SCALE 1:2500 @ 3'x4 0 50 100 Residential (gross) High Density (55 units/ha) Valleyview South Master Plan Study Area Boundary Public / Institutional Parks / Green Space Land Parcels B1. Land Use Plan Medium Density (20 units/ha) Environmental Protection Road Low Density - Small Lots (10 units/ha) Ρ Potential Park Location Mixed-Use Industrial Commercial GROUNDSWELL P Existing Park Location Low Density - Large Lots (8 units/ha) Mixed-Use Residential Commercial (20 residential units/gross ha) •••• Multi-Use Pathway / Corridor O MODUS Potential Viewpoint

Valleyview South at full build-out is about 4200 people. Refer to Table 5.

Residential Land Use Designation	Gross Area (ha)	Minimum Density Target (units/gross ha)	Estimated Net Density (units/net ha)	Minimum # of units	Minimum Population ⁶		
Official Community Plan Minimun	n Density Ta	rget					
Valleyview South developable	85.3	20	31	1706	4198		
area							
Projected Valleyview South Densi	ty						
Low Density Residential 1	14.6	8	12	117	287		
Low Density Residential 2	13.4	10	15.5	134	330		
Medium Density Residential	16.0	20	31	320	787		
High Density Residential	12.6	55	85	693	1705		
Mixed-Use	22.5	20	31	450	1108		
Public/Institutional	6.2	0	0	0	0		
TOTALS	85.3	-	-	1714	4217		
MINIMUM # OF UNITS/GROSS HECTARE = 20.1							

Table 5. Valleyview South minimum density, housing units, and population projections

The 2040 OCP mandates a minimum residential density standard of 20 units/ gross hectare for new development within the Whitehorse Urban Core. Applied to the relevant land use types, the projected density for the Valleyview South area is 20.1 hectares. Refer to Table 5.

• Housing Types and Zoning

The intended range of housing choices for the Valleyview South area is best facilitated by flexible zoning that broadly prescribes permitted housing forms along with specific development details such as minimum lot sizes, setbacks, and maximum heights. Each Valleyview South development partner will apply for rezoning that best fits their individual development plans; the role of the Master Plan is to provide guidance on the zoning options that are compatible with the various residential land use designations.

Refer to Table 6 for the planning team's recommendations for appropriate zoning to fulfill the residential land use designations in the VSMP. Note that the team based its recommendations on the 2012 Zoning Bylaw, which is currently being rewritten to conform to the newly adopted OCP. In addition to the permitted uses in Table 6, additional housing forms may be permitted as a conditional use, if approved by City Council. Examples of conditional uses may be mobile homes and supportive housing, depending on the zone. To provide a transition area, lands that border different land designations could include zoning from the adjacent area, subject to the land designation achieving the minimum density target (as outlined in Table 5).

⁶ Based on 2016 census data of 2.46 persons per household in non-downtown areas of Whitehorse

Table 6. Recommended zoning for residential land use designations

Land	Recommended Zones	Permitted Housing						
Designation		Apt	3/4 plex	Town house	2 plex	Single	Care home	Suite
Low density 1	Comprehensive Residential Single Family (RCS) Comprehensive Residential Single Family 2 (RCS2) Comprehensive Residential Single Family 3 (RCS3)				x x x	X X X	x x x	x x x
Low density 2	Comprehensive Residential Single Family (RCS) Comprehensive Residential Single Family 2 (RCS2) Comprehensive Residential Single Family 3 (RCS3) Cottage Cluster Homes (RCM3) Residential Single Detached (RS) Residential Single Detached 2 (RS2)		x x x		x x x x x	x x x x x	x x x x x x	X X X X X
Medium density	Comprehensive Residential Multiple Family (RCM) Comprehensive Residential Multiple Family 2 (RCM2) Comprehensive Residential Townhouses (RCT) Comprehensive Residential Multiple Family (RCT2) Cottage Cluster Homes (RCM3) Residential Multiple Housing (RM)	x x x	x x x	x x x x x	x	x	X X X X X X	
High density	Comprehensive Residential Multiple Family 2 (RCM2) Residential Multiple Housing (RM)	x x	x	x			x x	

5.2.2 Policies

General

- 1. Promote a variety of housing forms and lot sizes to provide more affordable housing choices.
- 2. Promote housing that accommodates a range of lifestyles and life stages.
- 3. Support a variety of housing tenures, from fee simple to leasehold title.
- 4. Encourage the adoption of green building practices for all new construction.
- 5. Minimum density targets are averaged over the entire land use type. Development proposals for smaller geographic areas (e.g., lots, blocks) could be above or below the target, provided the overall target is met.
 - a. To ensure the overall target is met, development that is above the minimum density target should be developed prior to approving developments below the target.
- 6. Encourage sound attenuation measures in the design of residential buildings adjacent to Hamilton Boulevard and the Alaska Highway.
- 7. Encourage the design of housing to be adaptive and accessible for persons at different stages of life and with varying mobility.

Medium and Higher Density

- 8. The minimum density for High Density areas is 55 units per gross hectare (approximately 85 units per net hectare).
- 9. The minimum density for Medium Density areas is 20 units per gross hectare (approximately 31 units per net hectare).
- 10. Ensure that areas designated high and medium density creates an effective transition, in terms of building massing and height, to lower density areas.
- 11. Where buildings over three storeys are proposed, encourage the use of multiple stepped masses to avoid monolithic building forms and create sensitive transitions to outdoor spaces, adjacent buildings, and/or natural features/landscape.

- 12. Encourage the siting of some of the semi-private amenity space to be contiguous to multi-use pathways.
- 13. Consider the impact of slopes and building heights of mid-rise apartment buildings on the privacy and views of any adjacent lower-density residential areas.

Low Density

- 14. The minimum density for Low Density 1 areas is 8 units per gross hectare (approximately 12 units per net hectare).
- 15. The minimum density for Low Density 2 areas is 10 units per gross hectare (approximately 15.5 units per net hectare).
- 16. Ensure that areas designated low density create an effective transition, in terms of building massing and height, to higher density areas.

Refer to Appendix C for neighbourhood character examples to guide implementation of this section.

5.3 Mixed Use – Residential/Commercial

5.3.1 Overview

The purpose of the Mixed-Use Residential/Commercial land use designation is to facilitate the co-development of commercial and compatible residential uses, including a vibrant Urban Centre where nearby residents can obtain day-to-day goods and services. This designation applies to: three First Nation land parcels (C-117B, C-141B, and C-30B); one private parcel (Lot 427-1); and potentially up to four City and Government of Yukon (YG) owned parcels (Lot 427, Lot 426, Road #8006308, and Lot 438). These are described below.

• C-117B and C-141B

Both C-117B and C-141B are Type 2 Settlement Land parcels designated for Residential and Commercial use under KDFN's Self Government Agreement (SGA). The western half of each parcel is designated Commercial, while the eastern half (adjoining Valleyview) is designated Residential, with a specification that the residential use is limited to "single family dwelling units of a permanent nature only". KDFN's endorsement of the Master Plan represents its commitment to coordinate with neighbouring landowners where there is mutual benefit and vary the land use designation in its SGA to allow for flexible mixed-use development that includes a broader range of housing options. Refer to Figure 14 for a rendering of one potential development approach.

• C-30B

Preliminary site planning and citizen consultation for the northern portion of its C-30B parcel have been ongoing since 2019 as part of the TKC's plans for a new administration building/community gathering place. The remainder of C-30B has not been planned by the First Nation, nor is its intended land use set out in TKC's SGA. TKC's endorsement of the Master Plan represents its commitment to coordinate with neighbouring landowners where there is mutual benefit, including the installation of shared sanitary infrastructure and stormwater management.

Figure 14. Rendering of a commercial village on C-117B and residential uses on C-141B from the January 2023 design charrette (Note: this is just one of many development scenarios KDFN could pursue in the future).

• Lots 426, 427, 427-1, 438 and City Right-of-Way

Lots 427 and 427-1 are envisioned as being integrated into adjoining Mixed-Use Residential/Commercial development. The Land Use Plan indicates the parcels to the south, namely the upland portion of Lot 426, Lot 438, and City's right-of-way (ROW #8006308), being developed for mixed-use or being retained as parks and greenspace.

Recommended Zoning

The envisioned development diversity and flexibility for Mixed-Use Residential/Commercial areas in the Valleyview South area is best achieved with a range of zoning. Refer to Table 7 for the planning team's recommendations for appropriate zoning through which to fulfill the Mixed-Use Residential/Commercial land use designation. Note that the team based its recommendations on the 2012 Zoning Bylaw, which is currently being rewritten to conform to the newly adopted OCP.

Table 7. Recommended zoning for Mixed-Use Residential/Commercial land use designation

Land Parcel	Recommended Residential Zones	Recommended Commercial Zones
C-117B C-141B	See recommended residential land zones in Section 5.2.1	Neighbourhood Commercial (CN) Comprehensive Neighbourhood Commercial (CNC) Comprehensive Neighbourhood Commercial 2 (CNC2)
C-30B Lot 426 (upland) Lot 427 Lot 427-1 Lot 438 City ROW (#8006308)	See recommended residential land zones in Section 5.2.1	Neighbourhood Commercial (CN) Comprehensive Neighbourhood Commercial (CNC) Comprehensive Neighbourhood Commercial 2 (CNC2) Highway Commercial (CH) Service Commercial (CS)

5.3.2 Policies

Urban Centre

- 1. Multi-storey mixed-use buildings are encouraged and standalone commercial uses are discouraged.
- 2. Promote a transition in building height from taller to shorter buildings both within and across different uses.
- 3. Commercial uses in the Urban Centre will be on the ground floor with residential uses above.
- 4. Promote a built form that encourages the establishment of commercial and retail services that address day-to-day needs and facilitate neighbourhood gathering.
- 5. Support a diversity of compatible commercial activity within the Urban Centre to create a vibrant employment hub.
- 6. Encourage the design of buildings within the Urban Centre to frame and activate streets and other open spaces to support walking and cycling, pedestrian comfort, and social interaction.
- 7. Encourage the orientation of primary building facades and entries to the fronting street or open space to create street edge definition and activity.
- 8. Prioritize informal gathering through public spaces that encourage pedestrian accessibility and circulation.
- 9. Encourage businesses to animate sidewalks and streetscapes through outdoor programming and amenities, such as, but not limited to, patios and street art.
- 10. Where possible, support breaking up contiguous areas of parking into smaller lots and use of landscaping to soften visual impacts.
- 11. Support the siting of parking behind buildings or screen through landscape design to promote a pedestrian friendly environment and minimize views from residential uses.
- 12. Improve safety by ensuring that public spaces are animated with a diversity of users, programming, and adjacent active transportation routes.
- 13. Ensure that commercial units have convenient access along the active transportation network.

Other Areas

- 14. Encourage landowners to consider opportunities to complement preceding development on adjacent lots.
- 15. Support KDFN in amending the land use designations in their Self-Government Agreement to allow for more flexible development.
- 16. Encourage the siting of stand-alone and/or single storey commercial uses adjacent to the highway where practicable.
- 17. In areas bordering Medium Density and Low Density, encourage complementary and/or similar housing forms and density.

- 18. Ensure that the privacy and integrity of the existing public/institutional use on Lot 2 is not negatively affected by development.
- 19. Should development potential of Lots 426 and 438 and the City's ROW (#8006308) prove limited, YG and the City should retain these parcels for use as Parks/Greenspace.

Refer to Appendix C for neighbourhood character examples to guide implementation of this section.

5.4 Commercial/Industrial

5.4.1 Overview

The southeast portion of the Valleyview South area consists of a mix of YG and City lands, with YG's Lot 426 being the largest and most consequential parcel. Lot 426 has a roughly 12 metre elevation gain between its southern boundary (bordering on Wasson Place) and the central and northern portions that occupy the same terrace as the City's ROW (#8006308) and YG's Lot 438. Development here is complicated both by the terrain and nearby uses.

Due to development constraints in this area, the Master Plan flexibility for Mixed-Use Commercial/Industrial development, Parks/Greenspace, or a combination of both, as the desired land use in the southern portion of Lot 426.

5.4.2 Policies

- 1. Ensure convenient access to the active transportation and transit networks from all commercial/industrial development.
- 2. Ensure that sufficient land is set aside on Lot 426 to accommodate a road extension from Wasson Place to Lot 429's commercial/industrial, which is outside of the study area for this Master Plan.
- 3. Ensure that development of the southern portion of Lot 426 aligns with adjacent existing uses, the grading needs of adjacent landowners (outside of the Valleyview South area), Wasson Place road extension, and the potential need for a transit and emergency egress route (see Appendix B2: Transportation Concept).
- 4. Require appropriate buffers between Mixed-Use Commercial/Industrial and Mixed-Use Residential/ Commercial.
- 5. Ensure that the privacy and integrity of the existing Public/Institutional use on Lot 2 is not negatively affected by development.
- 6. Should development and/or access potential prove limited, this area should remain as Parks/Greenspace.
- 7. If feasible, Lot 426 should connect the planning area to the Hillcrest Industrial area with a transit and emergency only access route to provide a secondary egress point to the highway and improve transit routing in this area.

5.5 Public/Institutional

5.5.1 Overview

There are two areas designated for Public/Institutional use in the Land Use Plan. Each is described below.

• Northern Area - North of Sumanik Drive

The northern end of the planning area, bordering on Hamilton Boulevard and in proximity to the Canada Games Centre, is considered highly strategic for a future public facility, such as a recreational facility. Due to its strategic location the area is set aside for future community needs.

• Eastern Area – Near the Alaska Highway

The northern portion of TKC's strategically located Settlement Land parcel C-30B is designated Public/Institutional. Potential uses include an administration building, community gathering facility, cultural centre, or other public/institutional use that serves the needs of TKC citizens.

5.5.2 Policies

General

- 1. Uses that may be suitable for inclusion in the Public/Institutional area may include, but are not limited to, a recreational facility, administrative building, cultural centre, school, transit hub, and/or other uses as defined in the OCP or zoning.
- 2. Ensure convenient access to the active transportation and transit networks from all public/institutional development.
- 3. Encourage the use of active transportation and transit by employees, visitors, and patrons by providing secure bicycle parking and transit stops.

Northern Area

- 4. Consider ways to screen parking and attenuate noise to minimize impacts to Valleyview residents.
- 5. Uses and building design should complement and enhance the Urban Centre and the existing recreational hub to the west, if feasible.
- 6. Should KDFN decide to not develop an Urban Centre on its Settlement Lands, consider the potential to develop one in this area.

5.6 Parks, Open Space, and Trails

5.6.1 Overview

Active Park Spaces

The Land Use Plan indicates a system of built park spaces dispersed throughout the Valleyview South neighbourhood offering a variety of structured leisure opportunities. This system acts as a complement to connections to larger natural greenspaces both within and outside of the planning area, such as nearby McIntyre Creek/Chasàn Chuà and Paddy's Pond/Ice Lake regional parks.

During the November 2022 engagement for VSMP, survey respondents in adjacent neighbourhoods selected their "Top 3" parks and open space features for the new neighbourhood. Residents of Valleyview, Hillcrest and Granger showed a strong preference for natural greenspace/forest and trail connections, with a playground ranking third. McIntyre residents favoured (in order of preference): a community garden, playground, and public BBQ/firepit and trail connections (tied for third).

Active park spaces will be created through the 10% public land dedication under the Subdivision Control Bylaw. This dedication should result in approximately 8 hectares (not including passive and protected areas).

• Passive Parks/Greenspace

The Land Use Plan indicates several greenspaces that are intended for passive leisure opportunities and urban forested. Passive parks and green can provide informal recreational space, trails, and stormwater management. These are located north of Hillcrest, southeast of Valleyview, and west/northwest of Valleyview.

Protected Area

The Land Use Plan includes an environmental protection designation for the small kettle pond situated between Lots 429/430 and Hillcrest. The designation recognizes the importance of retaining this locally unique feature as a natural place as well as its role in the local hydrological regime.

5.6.2 Policies

General

- 1. The Land Use Plan provides the broad conceptual location of parks. Landowners may exercise flexibility in where parks are sited on their parcels, subject to a relatively even distribution throughout the broader neighbourhood and access to the active transportation network.
- 2. Promote walking by encouraging parks and/or trails to be situated within 200 metres of each home.
- 3. Prioritize proximity of park spaces to the active transportation network.

Active Park Spaces

- 4. Suitable uses may include, but are not limited to, open space, community garden, dog park, skating rink, gathering space, a toboggan hill and other uses as defined in the OCP or zoning.
- 5. To ensure adequate park space for future residents, cash-in-lieu should not be accepted in fulfillment of the Subdivision Control Bylaw.
- 6. Balance the park, recreation, and culture experiences in the neighbourhood with those provided in adjacent neighbourhoods.
- 7. Develop spaces that foster health, social connections, and appreciation for the natural environment.
- 8. Design a variety of facilities and amenities in parks that function for a diversity of ages and abilities.
- 9. Support local food systems through considering using park space for community gardens, greenhouses, etc.
- 10. Where appropriate, consider opportunities to incorporate First Nation history, heritage, language, legend, stories, and place names into interpretive signage, park names, and placemaking features.
- 11. Promote year-round use of parks through seasonally appropriate amenities and design.
- 12. Consider the development of a toboggan hill and/or other recreational amenity to utilize the slope between Sumanik Drive and Alaska Highway in conjunction with the conversion of this section of roadway into an active transportation corridor.
- 13. Prioritize high quality, durable, natural materials (such as wood, metal, and stone), and nature-inspired elements in the design of park amenities.
- 14. Incorporate maintenance considerations into park design, such as providing water connections to central park space for irrigation.
- 15. Ensure that easements and natural surface trails (not identified on the Transportation Map in Appendix

B2) are located to provide convenient pedestrian access to greenspace from the road network.

- 16. Design parks and trail corridors utilizing Winter City principles to maximize their functionality and use throughout the year.
- 17. Design parks and trail corridors utilizing Crime Prevention Through Environmental Design principles, including the use of lighting to increase the safety of parks and trails.

Landscaping and buffers

- 18. Ensure that neighbourhood character is reinforced through the planting and/or replacement of street trees that help preserve/ restore the tree canopy.
- 19. Plant trees and other vegetation along streets, in parking areas and in other paved open spaces to store carbon, reduce water run-off, buffer windstorms, and provide shade.
- 20. Utilize native low grass and wildflower mix (unmowed) for areas that require low maintenance such as open greenspace in parks, landscaped boulevards, and around stormwater management facilities.
- 21. Maintain a minimum 60-metre vegetated buffer from the rear lot lines of the closest residential properties in the Valleyview neighbourhood.
- 22. Apply the entirety of Lot 429's public land dedication requirement within the Valleyview South Master Plan Area portion of the lot. This dedicated greenspace could be used to increase the required buffer between the residential uses in the Valleyview South area and the mixed-use commercial/industrial area off of Wasson Place or as park space elsewhere within the portion of Lot 429 within the Valleyview South area.

Refer to Appendix C for neighbourhood character examples to guide implementation of this section.

6.0 Infrastructure and Servicing

The provision of infrastructure at the level of urban servicing is essential to meet the needs of future development in the Valleyview South area. Infrastructure will aim to be cost effective, respect the environment, and conserve water and energy resources. While identified conceptually in the Master Plan, specific infrastructure requirements for each landowner's parcels will be determined during detailed engineering design and through the negotiation of development agreements with the City.

Note: The transportation and servicing concepts described in the following sections are predicated on a significant clearing and regrading effort that will involve the removal of an estimated 4-5 million cubic metres of gravel from the former tank farm and adjoining parcels. The gravel extraction is described in Section 6.6.

6.1 Transportation Network

6.1.1 Overview

Road Network

The Transportation Concept in Appendix B2 envisions a new road network that integrates the Valleyview South area with surrounding major transportation corridors, distributes vehicle traffic efficiently through the area, and facilitates an efficient and intuitive driving experience for future residents.

• Traffic Impacts and Improvements

The Traffic Impact Analysis (TIA) included in Appendix D predicts that about 13,800 total daily vehicle trips will be created by the new development at full build-out, with accompanying percentage increases in vehicular demand on the existing road network. The TIA was based on an approximate 250 increase in dwelling units over the minimum requirements set in Section \Box . Refer to Table 8.

Traffic Parameter		
Total Number of Vehicle Trips Generated at Full Build-out		
Weekday AM peak hours	1,202	
Weekday PM peak hours	1,232	
Daily	13,818	
Potential Percentage Increase in Vehicular Demand on Surrounding Road Network – AM (PM)		
Hamilton Boulevard (between McIntyre Drive and Alaska Highway)	20% (20%)	
Two Mile Hill Road (east of Range Road intersection)	20% (20%)	
Alaska Highway (between Range Road and Hamilton Boulevard/Two Mile Hill Road intersections)	50% (55%)	
Range Road (between Two Mile Hill and Alaska Highway intersection)	10% (10%)	

Table 8. Projected traffic generation and impacts from Valleyview South development

According to the TIA, the intersections of the Alaska Highway/Hamilton Boulevard and Two Mile Hill Road/Range Road will face operational challenges in 2040 under background traffic conditions. At full build-out, Valleyview South's internal intersections should maintain satisfactory operating conditions, as should most of the external intersections. However, the new neighbourhood's traffic would undermine the recommended background condition improvements to the Alaska Highway/Hamilton Boulevard and Two Mile Hill Road/Range Road intersections (assuming these are implemented).

At the time this plan was drafted, the City was undertaking a study of improvements for both of these intersections.

Active Travel Modes

The 4.9-kilometre Active Transportation (AT) network depicted in the Transportation Concept in Appendix B2 features connections to several of the City's existing multi-use pathways (MUPs), including:

- The Hamilton Boulevard MUP at McIntyre Drive, the Canada Games Centre signalized intersection, and near Elijah Smith Elementary School;
 - o The Airport Trail MUP at the Alaska Highway & Range Road intersection; and,
 - The MUP serving Hillcrest and Granger neighbourhoods (east of Elijah Smith Elementary).
- Transit

The Transportation Concept depicts a new series of internal transit stops that meets the City's 2018 Transit Master Plan goal of situating transit stops within 400 metres of residences and businesses within the Urban Core. In addition, it highlights the possible incorporation of a transit egress lane that would connect the central (or upland) portion of the planning area with Wasson Place to the south. This lane could also serve as an additional emergency egress to the Alaska Highway for the neighbourhood in the event of a wildfire or other disaster. An estimated 340 transit users could be served.⁷

Recreational Motor Vehicles

The Transportation Concept does not direct further expansion of the City's motorized trail network. The area is already well served by the Hamilton Boulevard motorized MUP and the new neighbourhood's MUP can offer an alternative experience for non-motorized users. All-Terrain Vehicles (ATV) are allowed to use City streets for the purposes of connecting to the nearest motorized multi-use trail and/or permitted open space, subject to other requirements of the ATV Bylaw. Snowmobiles are generally allowed on trails, subject to the Snowmobile Bylaw.

6.1.2 Policies

- 1. The Transportation Concept provides the broad conceptual location for roadways, transit stops, and AT infrastructure. Each landowner may exercise flexibility in where these elements are located on their properties, subject to the achievement of an equivalent degree of connectivity for all modes of travel.
- 2. Until further assessment is completed by the City, consider the Valleyview South's TIA's recommendations to manage the 2040 background traffic condition for Valleyview South's external road network:

⁷ Based on 2016 data, approximately 8% of Takhini and Riverdale residents use transit as their main mode to commute. Applied to VSMP 4,217 people = 337 transit users.

- a. For the Two Mile Hill & Range Road intersection:
 - i. Revise the southbound approach by converting the existing configuration of one through and left turn lane, plus one dedicated right turn lane, into one dedicated left turn lane and one lane accommodating both through and right turns;
 - ii. Add a through lane to the eastbound approach;
 - iii. Introduce a protected left turn phase for the westbound approach, converting it into a protected plus permissive left turn; and,
 - iv. Update the signal timing plan for both the AM and PM peak hours.
- b. For the Alaska Highway & Hamilton Boulevard intersection:
 - i. Implement an additional dedicated left turn lane for westbound and southbound approaches, creating a double left turn configuration;
 - ii. Convert the northbound right turn, previously regulated by a yield, into a free-flowing movement;
 - iii. Provide an overpass for pedestrian and cyclist movements; and,
 - iv. Update the signal timing plans for both the AM and PM peak hours.
- 3. Until further assessment is completed by the City, consider the Valleyview South's recommendations to manage the 2040 total traffic condition for Valleyview South's external road network:
 - a. For the Two Mile Hill & Range Road intersection:
 - i. Update the signal timing plan for both the AM and PM peak hours.
 - b. For the Alaska Highway & Hamilton Boulevard intersection:
 - i. Introduce an extra through lane for the eastbound approach to accommodate the growing volume of through traffic; and,
 - ii. Update the signal timing plan for both the AM and PM peak hours.
- 4. Provide a connected internal road network by developing:
 - a. A curving east-west/north-south collector road that connects the central portion of the Valleyview South area to Hamilton Boulevard at McIntyre Drive;
 - b. An intersecting north-south collector road that connects the Mixed-Use Residential/Commercial areanear Sumanik Drive and High Density Residential area with the entrance opposite McIntyre Drive;
 - c. A connection between the central portion of the Valleyview South area to the Alaska Highway at Range Road;
 - d. The expansion and realignment of the existing access to Lot 262-2 and Lot 429 to a straighter northsouth collector road intersecting with the Alaska Highway connecting road;
 - e. Intersection upgrades (3 to 4 way) at Canada Games Centre & Hamilton Boulevard and Alaska Highway & Range Road;
 - f. Closure of Sumanik Drive east of Valleyview Drive to vehicular traffic, after alternative highway access is provided at Range Road;
 - g. A new major (two lane) roundabout at McIntyre Drive & Hamilton Boulevard and a new minor (one lane) roundabout at Sumanik Drive and the north-south collector road; and,
 - h. Use of two-way stops at most internal intersections to facilitate emergency response and better traffic flow.
- 5. Consider an alternative road alignment from the CGC into the Valleyview South area to provide a more direct route into the centre of the area and improve circulation, especially for transit.
- 6. Promote active transportation by developing:
 - a. East-west MUP connection from Hamilton Boulevard & McIntyre Drive to the Alaska Highway & Range Road;
 - b. East-west MUP connection from the CGC to the Alaska Highway & Range Road, via Sumanik Drive east of Valleyview Drive;

- c. North-south MUP connection from Elijah Smith Elementary School to the CGC, generally through the middle of the planning area
- d. After a fully functioning Alaska Highway connection is established at Range Road, convert the eastern road segment of Sumanik Drive (east of Valleyview Drive) into a wide AT pathway with designated lanes for pedestrian and cyclist traffic; and,
- e. Pedestrian improvements and the demarcation of a dedicated cycling lane along the western segment of Sumanik Drive (west of Valleyview Drive).
- 7. Promote a pedestrian-friendly neighbourhood by:
 - a. Considering traffic calming measures, such as curb extensions and raised crosswalks;
 - b. Creating well-lit road corridors;
 - c. Requiring sidewalks separated from the roadway on both sides of all major and minor collector roads;
 - d. Requiring sidewalks on both sides of roadways in medium and high density areas;
 - e. Considering reducing the internal road speed limit to 30 km/hr in strategic locations to encourage safety and comfort for pedestrians and cyclists; and,
 - f. Providing winter maintenance of all MUPs within the new neighbourhood, where feasible.
- 8. Transit stops will be constructed or improved to City standards.
- 9. Transit stops are conceptually located on the Transportation Map and should be located at key intersections and destinations.
- 10. Provide bicycle parking at all neighbourhood parks.
- 11. Require the provision of adequate bicycle parking for commercial and public/institutional uses.
- 12. Encourage use of active transportation by employees and visitors to commercial and public facilities by requiring Class 1 bicycle parking.

6.2 Water Servicing

6.2.1 Overview

The Servicing Concept presented in Appendix B3 anticipates that multiple connections will be made to multiple watermains surrounding the planning area to achieve the desired looping system configuration. Conceptual connection points are indicated, but their exact placement will be negotiated with the City through the detailed design process. In addition, the City's Water and Sewer Master Plan will identify, at a very preliminary level, potential offsite improvements triggered by this development. These too will be further confirmed, quantified, and costed during detailed design, including the percentage allocation to benefitting areas. The study area is divided into 3 Service Areas, based on water, sanitary, and stormwater infrastructure and the intended final grade (See the Servicing Plan illustrated on the following page and in Appendix B3).

• Servicing Area 1 - North of Sumanik Drive

The future public/institutional development on City/YG lands and mixed-use residential commercial development on C-117B can connect to the water trunkmain west of Valleyview. A maximum of two connections (one northward and one southward) is envisioned.

• Servicing Areas 2 & 3

Servicing Area 2 (Lots 262-2, 429, 430, 431, C-30B, and smaller parcels in the southeast) can likely connect to the Valleyview and Hamilton Boulevard trunkmains to facilitate a looping water system. The higher density development in Servicing Area 3 will require a larger diameter watermain that connects to the trunkmain west of Valleyview or the Alaska Highway to achieve the higher fire flows required by the City. Note that the southeast portions of Servicing Area 2 may or may not be integrated into this scheme, depending on whether greenspace or mixed-use development is the final land use.

6.2.2 Policies

- 1. Encourage the consideration of the most cost effective and low maintenance watermain alignment toservice higher density development with the necessary fire flows.
- 2. Encourage the consideration of an east-west utility corridor connecting the Alaska Highway withHamilton Boulevard that could accommodate water, sanitary, and power infrastructure.
 - a. Alternative corridor alignments utilizing the right-of-way in the to-be-decommissioned portion of Sumanik Drive and water trunkmain easement west of Valleyview should be considered.

6.3 Sanitary Servicing

6.3.1 Overview

The Servicing Concept in Appendix B3 depicts an approach to connect the Valleyview South area to the surrounding City sanitary system, accounting for the challenges posed by the varying elevations across the area and objective of minimizing the long-term operations and maintenance burden on the City. The concept generally directs sanitary servicing for the central, southern, and eastern areas (Servicing Area 2) to a shared lift station and forcemain, while allowing the remaining areas (Servicing Areas 1 and 3) to connect to existing infrastructure via gravity. The sanitary servicing options are described below by servicing area.

It should be noted that the City's Water and Sewer Master Plan will identify, at a very preliminary level, potential offsite improvements triggered by this development. These will be further confirmed, quantified, and costed during detailed design, including the percentage allocation to benefitting areas.

Servicing Area 1

Development in Servicing Area 1 will be facilitated via a new gravity main that will connect to the Hamilton Boulevard sewer trunkmain near the Alaska Highway intersection (Manhole #910-011079). The alignment of the gravity main will be determined through detailed design.

• Servicing Area 2

Servicing Area 2 – consisting of Lots 262-2, 429, 430, 431, C-117B (east), C-30B, and the smaller parcels in the southeast - will be graded down from the southwest to northeast to facilitate gravity conveyance of sanitary flows to a new shared lift station. A sanitary forcemain will be installed to convey pumped flows up to Hamilton Boulevard. This sanitary servicing approach will require the removal of significant amounts of gravel from the area (see Section 6.6). Note that the southeast portions of Servicing Area 2 may or may not be integrated into this scheme, depending on whether greenspace or mixed-use development is the final land use.

The new sanitary lift station is anticipated to be sited in the southeastern corner of Lot 431, adjacent to the Alaska Highway. A generator, pumps, and control systems will be located inside the building, while the wet well will be located outside. Ideally, pumps run for longer periods and fewer on/off cycles to extend their operating life and to avoid operational issues (i.e., wastewater going septic creating odour and corrosive issues, solids settling in lift station, etc.) that are associated with extended non-operating periods; this will need to be factored into the sizing of pumps as the neighbourhood builds out.

• Servicing Area 3

Servicing Area 3 is higher than Hamilton Boulevard and will be graded to connect via gravity to the sewermain just north of the McIntyre subdivision. The eastern half of C-141B, which is lower, could be integrated with the Servicing Area 2 sanitary system.

6.3.2 Policies

- 1. The design of the lift station should consider the phasing and timing of the connecting developments and be capable to upgrade with additional pumps to increase the pumping capacity as the area expands and approaches full build-out.
- 2. The forcemain design should be based on the lift station design and the appropriate diameter to service the full build out of the development. Design should consider the installation of a second smaller diameter forcemain for the short term to avoid issues with long residence times in the forcemain.
- 3. The forcemain alignment should consider opportunities to avoid the administrative complications of siting on Settlement Land.
- 4. The gravity main should be sized in anticipation of the additional flows from the connecting forcemain and associated development.
- 5. Lands that accommodate lift stations should be zoned Public Utility.
- 6. Lift station should be fenced and gated.
- 7. Encourage the consideration of an east-west utility corridor connecting the Alaska Highway with Hamilton Boulevard that could accommodate water, sanitary, and power infrastructure.
 - a. Alternative corridor alignments utilizing the right-of-way in the to-be-decommissioned portion of Sumanik Drive and water trunkmain easement west of Valleyview should be considered.
- 8. Require landowners to develop strategies to minimize clearing and disruption of the greenspace in the design and construction of the gravity main in Servicing Area 1.

9. Minimize negative aesthetic impacts from the lift station to C-30B and the Alaska Highway corridor, where feasible.

Refer to Appendix C for neighbourhood character examples to guide implementation of this section.

6.4 Stormwater

6.4.1 Overview

The Servicing Concept in Appendix B3 depicts a highly conceptual approach to managing stormwater in the Valleyview South area through the construction of several stormwater management facilities (SWMFs). The broad objective of stormwater management is to ensure that post-development discharges (i.e., flow rates and water quality) match pre-development discharge conditions to receiving environments and waterbodies.

Stormwater mains will generally follow the gravity sewer network and discharge into the SWMFs for onsite management. Features will be situated at depressions/low spots and be designed to avoid conflicts with adjacent land uses. Stormwater routing will be further delineated in conjunction with a coordinated grading plan (see Section 6.6); however, the anticipated broad approach is described below.

• Servicing Area 1

A small SWMF could be sited downgradient from and to the north of the future City/YG and KDFN developments.

• Servicing Area 2

Stormwater from Servicing Area 2 could be managed with two small SWMFs. The central area SWMF could be sited near the eastern boundary of Lot 429 to capture drainage from most of Lots 429/430. Another one could be sited around the north end of C-30B to receive stormwater from C-30B (and adjoining parcels to the south), Lot 262-6, Lot 431, and the eastern half of C-141B. Note that the southeast portions of Servicing Area 2 may or may not be integrated into this scheme, depending on whether greenspace or mixed-use development is the final land use.

• Servicing Area 3

The northwest portion of Lot 430 and western part of C-141B will be graded towards Hamilton Boulevard. A review of the existing drainage ditch and infrastructure should be conducted as part of detailed design. As required, an additional SWMF could be sited in the area.

6.4.2 Policies

- 1. The Servicing Concept provides the broad conceptual location for SWMFs. Each landowner may exercise flexibility in where stormwater management components are located on their properties, subject to the achievement of stormwater management objectives.
- 2. All SWMFs should control and retain stormwater runoff and release it to receiving waterbodies at predevelopment rates and volumes.

- 3. Detailed design of SWMFs should consider the use of stormwater management pond(s) as well as smaller low impact source controls such as bioswales, rock pits, and rain gardens.
- 4. SWMFs should be in low lying areas and integrated into the landscape design for the greenspaces.
- 5. Stormwater system design should consider the use of overflow structures to ensure the stormwater system can manage a peak event, including spring freshet when the ground may still be frozen.
- 6. Stormwater system design should consider operational requirements, including managing potential freezing issues affecting the performance of the stormwater infrastructure.
- 7. Ensure that adequate maintenance of the SWMFs is integrated into the City's operations plans.
- 8. Review the major storm outlets during detailed design to determine if any erosion protection is required.

Refer to Appendix C for neighbourhood character examples to guide implementation of this section.

6.5 Power and Communications

6.5.1 Overview

The onsite and offsite power needs associated with the Valleyview South area will be delineated during detailed engineering design. While power servicing is anticipated to be straightforward within the development footprint, the routing of the distribution line through Lots 12 and 431 and its treatment through C-141B will require careful consideration. Communications lines will likely be installed in the same duct bank as power within the road right-of-way.

First, the lift station (in addition to public and commercial land uses located to the west) will require three-phase power, instead of the current two-phase on site. Second, the powerline's alignment compromises the grading concept and subsequent development of portions of Lots 12 and 431 for medium density residential. Third, the grades on C-141B will need to be raised to maximize the buildable area and ensure adequate conditions for lot grading, servicing, and road access. Lastly, underground power is preferred as compared to overhead to improve neighbourhood aesthetics and increase developable areas (since overhead lines require more clearances and need to follow straighter alignments to avoid multiple guy wires).

6.5.2 Policies

- 1. Encourage the consideration of an east-west utility corridor connecting the Alaska Highway with Hamilton Boulevard that could accommodate water, sanitary, and power infrastructure.
 - a. Alternative corridor alignments utilizing the right-of-way in the to-be-decommissioned portion of Sumanik Drive and water trunkmain easement west of Valleyview should be considered.
- 2. Work closely with ATCO Electric Yukon to ensure that negative impacts of gravel extraction and grading activities in proximity to the transmission line are minimized.

6.6 Site Grading/Gravel Extraction

6.6.1 Overview

The transportation and servicing concepts, combined with the desire to maximize development of the steeper areas adjoining the Alaska Highway, necessitate the regrading of most of the Valleyview South development area. Re-grading effectively means the excavation and removal of significant volumes of subsurface gravels from the area.

Servicing Area 2 will be graded to slope towards the proposed lift station adjacent to the Alaska Highway, resulting in a relatively gradual, consistent slope averaging about 2-3% between Hamilton Boulevard and the Alaska Highway. The preliminary estimate for the amount of extracted gravel needed to achieve that average slope is approximately 4.5 million cubic metres. Note that the southeast portions of Servicing Area 2 may or may not be integrated into this scheme, depending on whether greenspace or mixed-use development is determined to be the final land use.

The removal of this significant quantity of gravel could be achieved in as few as five years; however this timeframe may not be achievable or realistic. The estimated annual quantity of Valleyview South aggregates likely exceeds the annual gravel demand in the region, assuming the Valleyview South area became the sole supplier (which is unlikely given competition from other gravel operations). This supply-demand mismatch necessitates that a suitable storage area is located, and preferably nearby to minimize hauling costs. Lastly, it may not be feasible to dedicate so many resources to the extractioneffort.

It is critical to apply lessons from the past in approaching this future gravel removal. During this planning process and previous ones involving the tank farm area, Valleyview and Hillcrest residents have expressed concerns about a lack of development progress and the perceived operation of an urban gravel pit in proximity to their homes. Moving forward, a balance must be struck between gravel removal and tangible progress on the development front. This balance seeks to avoid a scenario in which the clearing and regrading of the entire tank farm and surrounding area occurs years before any housing is built.

The Master Plan envisions an incremental approach in which site preparation (i.e., clearing, gravel removal, and rough grading) generally proceed only so far as is required to facilitate infrastructure installation and final grading for a defined area, or phase, of development. In this way, the removal of gravel and tangible development progress are coupled in the development approval process. The phases, and their interrelationships, are depicted in the Phasing Concept in Appendix B4 and further described in Section 7.3. The policies below deal specifically with the gravel extraction activity.

6.6.2 Policies

- The Phasing Concept in Appendix B4 presents a high-level spatial framework to achieve the City's objective of ensuring site preparation in the Valleyview South area does not advance too far ahead of development. Landowners may exercise flexibility around their regrading activities so long as their plans generally achieve the Phasing Concept's objectives.
- 2. Prior to the initiation of regrading and/or gravel extraction activities by any owner of a parcel located within Phase C of the Phasing Concept, a coordinating grading plan is required. The plan should include the following information:
 - a. Existing and final conceptual grades for Phases D-F (as well as B should C precede it);
 - b. An updated phasing plan showing how the extraction will be phased and aligned with the first

phases of subdivision construction;

- c. Estimated aggregate needs for the phase(s) of development the proposed gravel extraction precedes;
- d. An operations plan showing proposed haul routes, processing areas, and stockpile locations; and,
- e. Letters of consent from adjacent landowners within the plan area.
- 3. Encourage the redistribution of aggregate within the planning area to minimize the amount of aggregate needed to be hauled off site.
- 4. Direct all regrading activity towards the Alaska Highway and/or Wasson Place, including establishing access to the highway and/or Wasson Plan and prohibiting the use of Sumanik Drive, where feasible.
 - a. Access to the Alaska Highway and/or Wasson Place should be established prior to the removal of gravels from any portion of the development area south of Sumanik Drive.
 - b. Hamilton Boulevard or Sumanik Drive should only be used for hauling if access to the Alaska Highway is blocked for an extended period.
- 5. Landowners are required to obtain a Temporary Use Permit from the City to proceed with grading and removal of aggregate material from the planning area. Permits may also allow for processing activities on site.
- 6. Establish mechanisms for information sharing and problem-solving between the Valleyview South development partners engaged in gravel extraction, the City, and adjacent neighbourhoods. Such mechanisms may include:
 - a. Meetings to discuss operating plans.
 - b. Mandatory advisories when significant changes to the operating plan are proposed.
 - c. Ongoing email communications.
- 7. To mitigate adverse impacts from gravel removal and processing activities, such as noise, dust, and public safety, consider the use of the following measures in any Temporary Use Permit:
 - a. Limiting hours of operation for any and/or all proposed activities.
 - b. Restricting the type of material processing that may occur
 - c. Restricting areas where material processing may occur
 - d. Obtaining security deposits.
 - e. Limiting regrading activities to one or two-year periods.
 - f. Other timeframe limits tied to specific phases (or portions of phases) and extraction volumes.
 - g. Requiring remediation if regrading exposes contaminated soils.
- 8. Provide support, as needed, to explore options for the short and medium-term storage of extracted aggregates.
- 9. Where regrading has the potential to expose any contamination, require landowners to liaise with the Government of Yukon and remediate any area where contamination is exposed, providing proof to the City that the activities uphold the requirements of any affected Certificate of Compliance or other applicable regulations.
- 10. Encourage landowners to work closely with ATCO Electric Yukon to ensure that negative impacts of aggregate extraction and grading activities in proximity to the transmission line are minimized.

7.0 Implementation

As the Valleyview South Master Plan (VSMP) transitions to implementation, flexibility, and innovation will be required from the development partners and City of Whitehorse. The following section touches on the key tasks and strategic considerations that must be navigated to successfully implement the Plan.

7.1 Subdivisions

7.1.1 Overview

The unique challenge that the multi-owner nature of the Valleyview South development area posed during the planning stage will carry over to implementation, with numerous subdivisions and land dispositions requiring attention. Table 9 outlines some of the key challenges and possible approaches to resolving them.

7.1.2 Policies

1. Consider the recommendations summarized in Table 9 during the more detailed planning and/or subdivision approval stage, as appropriate.

Land Parcel(s) See Landowner map in Appendix A1	Development Challenge	Potential Solutions
Lot 66 and adjacent unsurveyed YG land	Portions of both parcels are proposed for Public/Institutional use. The best approach mayultimately depend on whether the facility developed is owned by YG or the City.	 Transfer land from one government to the other followed by rezoning and subdivision of a new parcel to house the facility
City road right-of- ways (ROWs)	Only a portion of one ROW (#8034222) is envisioned as part of the road network. Development on the southern ROW (#8006308) is complicated by its unusual configuration and adjacency to C-30B.	 Land sale or swap to adjacent landowners Incorporation into road network (where possible) Use as greenspace
Lot 427	This small parcel is oddly shaped situated and is between Lot 429 and C-30B.	 Incorporation into road network Land sale or swap to adjacent landowners
Lot 427-1	This lot currently houses two satellite receiversthat the VSMP proposes for decommissioning.	Work with landowner to relocate satellite receivers
	This lot is surrounded by Settlement Land, a City road ROW (#8006308) and future Mixed- Use Residential/Commercial development.	Ensure adjacent subdivisions consider this lot in the parcel fabric and access
Unsurveyed YG land (southwest corner)	A portion of this parcel is proposed for low density – small lot residential development but is shaped and situated in a manner that will make creating discrete lots within this area difficult.	 Land sale or swap to adjacent landowners Creation of a single lot that can accommodate numerous single family dwellings under different zoning (i.e., Cottage Cluster)

7.2 Regulatory Processes

7.2.1 Overview

Airport Regulations

As briefly discussed in Section 2.5.1, development in the Valleyview South area has the potential to conflict with obstacle clearance and noise zoning, assuming current grades are maintained. As the development partners advance their planning, particularly the coordinated grading, airport zoning impacts will be meaningfully assessed, and mitigation measures (if any) developed.

• Yukon Environmental and Socioeconomic Assessment Act

Section 47(2) (b) of the Yukon Environmental and Socioeconomic Assessment Act (YESAA) requires an assessment for various activities that will be carried out to develop the Valleyview South area. In general, the development is expected to trigger numerous activities listed under Schedule 1 of the Act, including:

- "Construction, modification, or decommissioning of a public road, including a public road used only in winter (Part 6.10);
- Quarry, crushing, or screening of minerals (Part 11.1);
- On Crown land or settlement land, moving earth or clearing land using a self-propelled power driven machine (Part 13.12);
- On Crown land or settlement land, leveling, grading, clearing, cutting or snow ploughing of the rightof- way of a power line, pipeline, railways line or road (Part 13.13b);
- On Crown land or settlement land, the extraction of sand, gravel, stone, marl, loam, clay or volcanic ash (Part 13.15); and
- Operation, decommissioning, abandonment or expansion of a gravel or sand pit or stone quarry (Part 13.16)."

Since public roads are expected to be constructed on nearly every lot (with the potential exception of Lot 262-2 and/or development occurring on crown or settlement lands, a YESAA assessment will be required for most, if not all, of the Valleyview South area.

The required YESAA assessment is anticipated to be a Designated Office level screening.

Contaminated Sites Regulation

Under the *Environment Act*, parties responsible for contamination have a duty to clean it up. Under the *Contaminated Sites Regulation* of the Act, any site designated contaminated may not be altered and/or otherwise developed without permission from the Government of Yukon. While the regulatory expectations are relatively black and white, there is a vast grey area to navigate when it comes to potential contamination liability. Development in the Valleyview South area intersects with both clear regulatory requirements and the realms of best practice and due diligence.

The matter of the former Whitehorse Upper Tank Farm (WUTF) is the most clearcut: the site is a known historic contaminated site that has been under some level of government oversight over the past three decades. Development of the two areas that have received Certificates of Compliance and the one which remains designated will require attention (for the former) and continued liaison with YG Environment (for the latter). Refer

to the map in Appendix A2 for an overview of Environmental and Special Places. However, Lots 429 and 430 are not the only known contamination issues in the Valleyview South area; contamination has also historically (and more recently) been encountered on Lot 426. Refer to Table 10 for an overview of contamination-related development issues and the Master Plan's accompanying recommendations.

Other properties in the Valleyview South area pose issues of potential liability, due either to the potential (but unconfirmed) deposit of contaminants or the migration of contaminants from adjacent parcels. Lot 262-2 and C-30B are potentially contaminated due to their proximity to the WUTF area and previous/existing uses, however, the presence and extent of any potential contamination needs to be studied. Conducting an Environmental Site Assessment (ESA) to confirm and/or rule out the presence of contamination is a best practice before land with potential for contamination issues is transferred or sold and will be required prior to rezoning and subsequent development. Refer to Table 10 for an overview of recommendations.

Table 10. Recommendations for known and potential contamination issues

Property	Status & Anticipated Development Impacts	Recommendations		
Parcels with Kn	Parcels with Known Contamination Issues			
Lots 429/430 – portion with Certificate of Compliance	These areas are proposed for residential use. The envisioned gravel extraction for site preparation has a high likelihood of bringing post-grading elevations to within 3m of known depth of contamination for numerous areas of environmental concern (AECs). There is a potential that at depth horizontal movement of contamination has occurred. A preliminary grading plan would confirm which AECs are impacted.	A comprehensive sampling plan should be organized with AECs staked out prior to the onset of earthmoving. Sampling should also occur around the AECs to confirm if horizontal movement of contaminants has occurred or not. Depressions could be backfilled with clean material or soils could remain in place if not contaminated. Either scenario would require confirmatory sampling and close liaison with YG Department of Environment.		

1 - (- 100/100	This second sub-second second se	The second state 400/400 states
Lots 429/430 – Ministerial Designation portion	 This area is also proposed for residential use. Its continued designated status means that any earthmoving activities are subject to oversight byYG Department of Environment. Contamination isrelated to groundwater and gravel extraction forsite grading and preparation would not be expected to impact the groundwater Nonetheless, the Certificate of Compliance would be issued only if YG is satisfied that the area poses little to no risk. This could occur in two ways: 1. Sampling could confirm that contamination has naturally attenuated to below numerical standards (which may be possible dependingon the development timeline); or 2. A risk assessment confirms that there is no risk to human health. 	The owner of Lots 429/430 should initiate dialogue with YG Department of Environment about the pre- conditions to receiving a Certificate of Compliance for the still designated area. The Certificate would likely detail the conditions within which human health risks are deemed non-existent and/or minimal. The administrative mechanism for transferring the Certificate (and accompanying conditions) to subsequent subdivided and privately owned parcels will need to be determined by YG.
426	The future use of this lot could be Parks/Greenspace, Mixed-Use Commercial/ Industrial, and/or Mixed-Use Residential/ Commercial. Lot 426 will also be the route if a transit/emergency egress is built to Wasson Place. Contamination was encountered during construction activity in 2022 and a Phase 1 ESA was reportedly completed.	Based on the results of the Phase 1 ESA,a Phase 2 ESA is recommended.
Parcels with Pote	ential Contamination Issues	
Lot 262-2	This lot is proposed for residential use. The ESA isout of date and doesn't reflect the past decade or so of winter snow storage use.	A new Phase 1 ESA is recommended.
C-30B	This parcel is proposed for Public/Institutional and Mixed-Use Residential/Commercial uses. No ESA has been completed to date. Groundwater contamination is possible due to its downgradient location from WUTF.	A Phase 1 ESA is recommended. If groundwater contamination is confirmedbut soil contamination is considered unlikely, a risk assessment could be undertaken to confirm that there are minimal risks to human health from the proposed development.
Lot 427-1	This lot currently houses two satellite receivers but is proposed for decommissioning, sale, andfuture Mixed-Use Residential Commercial development.	A Phase 1 ESA is recommended after the satellite receivers have been decommissioned and removed from the site and prior to sale and/or transfer of this parcel for development.

City road	Two City road ROWs intersect with and/or	A Phase 1 ESA is recommended prior	
right-of-ways	borderformer WUTF pipeline infrastructure.	to any site preparation and/or land	
(ROWs)	The Land Use Plan proposes ROW	disposition.	
	#8006308 for development as Mixed-Use		
	Residential/ Commercial and ROW		
	#8034222 as Medium Density Residential.		
Pipeline	Situated within proposed Mixed-Use	A Phase 1 ESA is recommended prior	
easements	Residential/Commercial (C-141B and C-30B)	to any site preparation and/or land	
	and Medium Density Residential uses.	disposition.	
C-141B	This parcel is proposed for Mixed-Use	A Phase 1 ESA is recommended prior	
	Residential/ Commercial development. The	toany site preparation and/or land	
	eastern portion intersects with the (assumed)	disposition.	
	former pipeline right-of-way.		

• City of Whitehorse Approvals

The adoption of the Master Plan by Council is the first step in a long sequence of approvals that the Valleyview South development partners will require from the City of Whitehorse. These include re-designations of parcels under the Official Community Plan (OCP), rezoning, temporary use permitting, and development approvals.

To fulfill the VSMP's Land Use Plan, several land holdings will need to be redesignated under the OCP, including:

- Portions of Lot 66 and adjacent unsurveyed YG land from Greenspace to Public Service;
- Portions of Lots 12 and 431 from Greenspace to Residential Urban; and
- A portion of the unsurveyed YG area in the south from Residential Urban to Greenspace.

The OCP allows for temporary gravel extraction for the purposes of site preparation. The process for temporary extraction is still under development, but the current understanding is that the adoption of the Master Plan will allow City administration to issue development permits for the relevant VSMP partners to pursue temporary extraction, subject to terms and conditions.

Once extraction of part or all the area is completed to the City's satisfaction, a development agreement will be negotiated and signed between each Valleyview South development partner and the City as a condition of subdivision and eventual transfer of roads, utilities, and public space to the City. The draft plan of subdivision will be reviewed for compliance with this Master Plan and the *Subdivision Control Bylaw* (i.e., 10% public land dedication) and the approved draft plan will allow detailed engineering to proceed. Due to KDFN and TKC's inability to transfer ownership of Settlement Lands, an alternate arrangement will also need to be captured in the agreement between the two governments for public land dedication, per the *Subdivision Control Bylaw*.

Detailed engineering design will be reviewed by the City for assurance that it meets the Servicing Standards Manual. A construction completion certificate will be issued once the infrastructure is developed, followed by a warranty period and final acceptance certificate, which triggers the transfer of the new land and infrastructure by the City.

In addition to the development agreement, the City and First Nations will likely negotiate a service agreement setting out roles and responsibilities with respect to infrastructure and municipal service provision on Settlement Land parcels. This agreement will need to respect the principles set out within the Self Government Agreements. There is already precedent for this with the McIntyre subdivision, and the City's negotiations with Chu Níi Kwän Development Corporation around the pending Copper Ridge subdivision should provide further guidance.

7.2.2 Policies

- 1. A favourable YESAA assessment decision must be obtained prior to applying for rezoning. A confirmation letter from the Yukon Environmental and Socioeconomic Assessment Board will be required where a landowner claims that an assessment is not required.
 - a. This Master Plan may be used in support of any YESAA application.
- 2. Ensure airport zoning regulations conform with rezoning and/or development proposals, including proposed building heights.
- 3. Consider the need for noise mitigation strategies at the time of rezoning.
- 4. Require an Environmental Site Assessment ruling out the presence of contamination prior to rezoning for any parcels deemed to have contamination potential, as set out in Table 10 above.
- 5. Prior to rezoning areas subject to designation under the Yukon Contaminated Sites Registry, require a Certificates of Compliance from YG Environment confirming adherence to any advice or requirements under the Yukon Contaminated Sites Regulation to allow for the proposed development to proceed.
- 6. For any areas subject to a Certificates of Compliance, require documentation from YG Environment at the cessation of gravel extraction and/or regrading confirming that:
 - a. The landowner has undertaken contaminant testing for any areas identified in the Certificate as being of potential concern and provided these results to YG Environment for review;
 - b. Grading activities have not exposed new areas of potential concern;
 - c. Minimum standards are maintained between any contamination and where a person could be exposed, including building foundations and trenches for buried infrastructure; and,
 - d. The relevant Certificate/s of Compliance is/are still valid.
- 7. If required by the post-grading status of areas subject to a Certificate of Compliance, consider imposing restrictions on built form to ensure the required minimum vertical separation between any contamination at depth and the intended land use is achieved.
- 8. Consider other recommendations summarized in Table 10 during the more detailed planning, rezoning and/or subdivision approval stage, as appropriate.
- 9. Ensure that other regulatory requirements are met during the rezoning, and subdivision approval stage, as appropriate.

7.3 Development Coordination and Phasing

7.3.1 Overview

The Phasing Concept in Appendix B4 spatially organizes the Valleyview South area into development areas, or phases, in which site preparation (i.e., clearing, gravel extraction, and regrading) and infrastructure installation can be jointly achieved. The concept distinguishes development areas that can proceed independently from those that are dependent on grading and infrastructure installation from another phase. These phases are highly conceptual and will be adjusted as the development partners undertake coordinated grading plans that provide finer-grained insight. Refer to Table 11 for further details.

Table 11. Proposed Valleyview South development phases

Phase	Land Parcels	Description	Pre-Requisite Phase
Α	Lot 66	Minor grading/gravel extraction	None
	YG land	 Public/Institutional, Mixed-Use 	
	C-117B	Commercial/Residential, and Parks/Greenspace	
		Hamilton Boulevard connection (at the Canada	
		Games Centre)	
		Sumanik Drive roundabout	
		Small stormwater management feature	
		Internal roads and active transportation infrastructure	
В	Lot 430	High Density Residential, Mixed-Use	None
	C-141B (west)	Commercial/Residential, and Parks/Greenspace	
		 Gravity sanitary connection to Hamilton Boulevard 	
		Roundabout at McIntyre Drive, internal roads, and	
		active transportation infrastructure	
		Small stormwater management feature (if required)	
С	Lot 12	 Major grading/gravel extraction 	None
	Lot 262-2	Medium Density Residential, Public/Institutional, and	
	Lot 429	Parks/Greenspace	
	Lot 430	Lift station and forcemain	
	Lot 431 C-30B (north)	 Small stormwater management facility 	
		 Powerline realignment and/or reconfiguration 	
		Alaska Highway road connection (and subsequent	
		closure of Sumanik Drive east of Valleyview Drive)	
	0.445	Internal roads and active transportation infrastructure	
D	C-141B	Major grading/gravel extraction	
	(east)Lot	Medium/High Density Residential, Mixed-Use	
	429	Commercial/Residential, and Parks/Greenspace	Phase C
	Lot 430	Small stormwater management facility Internal	
		roads and active transportation infrastructure	
E	C-30B (south)	Major grading/gravel extraction (C-30B)	Phase C
	Lot 426	Mixed-use commercial/residential (C-30B)	
	Lot 427 Lot 427-1	Mixed-use development and/or greenspace (YG/City)	
	Lot 438	Satellite dish relocation (Lot 427-1)	
<u> </u>		Internal roads and active transportation infrastructure	
F	Lot 429	Major grading/gravel extraction	Phase D
	Lot 430	Low density residential and parks	
	YG land	Internal roads and active transportation infrastructure	

7.3.2 Policies

- 1. The Phasing Concept in Appendix B4 presents a high-level spatial framework to achieve the City's objective of ensuring site preparation in the Valleyview South area does not advance too far ahead of development. Landowners may exercise flexibility around how they phase development so long as their plans generally achieve the Phasing Concept's objectives.
- 2. Development of portions of an indicated phase may proceed in isolation of the remaining portions,

particularly in the case where multiple landowners' parcels are included in the same phase.

- a. The exception is where one landowner's development plans are dependent on shared infrastructure that must be installed in advance on neighbouring land parcels.
- 3. Multiple phases may be undertaken concurrently, but only where any pre-requisite phases are sufficiently advanced.
 - a. Consider, where practicable, requiring subdivision approval on a pre-requisite phase (or phase portion) prior to permitting the initiation of site preparation for another phase (or phase portion); and,
 - b. Where 7.3.2.3a is not practical or creates undue hardship for landowners, require the completion of rough grading and major infrastructure installation prior to the initiation of clearing, gravel removal, and regrading for another phase (or phase portion).
- 4. The Phasing Concept in Appendix B4 outlines a general approach to achieve the City's objective of allowing gravel extraction and regrading to proceed while ensuring these activities do not outpace development itself. Landowners may exercise some flexibility around how they organize or phase development so long as their plans generally align with the Phasing Concept's objectives.
- 5. Development phases may overlap, provided that:
 - a. Site preparation (i.e., clearing, gravel extraction, and rough grading) are complete for one phase prior to the initiation of site preparation for subsequent the next phase; or
 - b. All necessary infrastructure are complete for one phase prior to the initiation of installing infrastructure on the subsequent phase
- 6. Consider opportunities to coordinate phasing between different landowners to maximize development efficiencies and minimize unnecessary infrastructure development costs.
- 7. Ensure that the servicing needs of future development on adjoining and/or interdependent parcels is considered during the engineering review of near-term development.
- 8. Explore opportunities to minimize infrastructure redundancies between land parcels and development phases.
- 9. Facilitate the future development of Lot 427-1 by working with the landowner to identify a suitable alternative site for the satellite dishes and assisting with the post-decommissioning land disposition.

7.4 Development Financing

7.4.1 Overview

The VSMP development partners have engaged in preliminary discussions around how to navigate the dual challenge of different development timeframes and cost sharing for shared infrastructure. The final arrangement may be precedent setting and require the bridging of a policy gaps.

Financing agreements will need to address cost sharing for the considerable project administration and consulting work that is yet to come, including detailed engineering design. One of the most challenging issues to navigate in this respect is the fair attribution of capital costs to each VSMP development partner.

7.4.2 Policies

- Prioritize the development of policy and/or other mechanisms to address how "latecomer" landowners/developers will contribute to the costs of shared infrastructure installed in earlier development phases.
- 2. While developing cost sharing mechanisms in 7.4.2.1, consider issues of financial capacity and equity as well as the role of public governments in providing a mechanism for financial transactions between themselves, First Nation, and/or private landowners.
- 3. Develop a framework to allocate shared infrastructure costs among landowners in an equitable manner.

7.5 Next Steps

7.5.1 Overview

The implementation of this Master Plan is anticipated to occur over the next 15-20 years, which started with the document's approval by City Council in May 2024 and ending with the final release of lots to the marketplace. Due to the significant complexity posed by multiple landowners with different development plans, let alone changing political priorities and market conditions, the Master Plan does not attempt to set out next steps on a medium or long-term basis. Instead, it focuses on the near-term actions that will be critical to maintaining the momentum and spirit of cooperation that the planning process has generated and the order phasing of development without proscribing development timelines.

7.5.2 Policies

- 1. Consider the establishment of a forum for continued City and Valleyview South development partner discussions to help ensure effective Plan implementation.
- 2. Continue to work with partner First Nations to:
 - a. Address outstanding issues around heritage resource protection in Valleyview South; and
 - b. Explore the potential for and/or identify a suitable First Nation inspired neighbourhood name.

References

- 3 Pikas. November 4, 2019. OCP Amendment Application for Phase 1: A Portion of the Whitehorse Upper TankFarm. Prepared for City of Whitehorse Planning and Sustainability Services.
- 3 Pikas. May 13, 2020. Development Potential and Housing Mix for Tank Farm Master Plan (Phase 2-4). Preparedfor P.S. Sidhu Trucking Ltd.
- CBC News. September 2, 2010. "Whitehorse tank farm site deemed contaminated". Retrieved from: https://www.cbc.ca/news/canada/north/whitehorse-tank-farm-site-deemed-contaminated-1.961560

City of Whitehorse. 2007. Servicing Standards Manual.

City of Whitehorse. 2018. Parks and Recreation Master Plan.City of

Whitehorse. 2018. Bicycle Network Plan.

City of Whitehorse. 2018. Transit Master Plan.

City of Whitehorse. 2020. Transit Route Modernization Plan.City of

Whitehorse. 2020. Trail Plan.

City of Whitehorse. May 2022. Draft Official Community Plan.

Connell, Jim. Letter to Mike Gau, City of Whitehorse re Certificate of Compliance – Proposed Lot A, FormerUpper Tank Farm.

Da Daghay Development Corporation. 2019. The Gathering Gazette (multiple editions from March to May). Dobrowolsky, H. and Johnson, L. 2013. *Whitehorse: An Illustrated History*. Figure 1 Publishing Inc. Vancouver,

BC, Canada.

EBA Engineering Consultants. January 1999. Plan of Restoration Yukon Pipelines Limited. Upper Tank Farm, Whitehorse, Yukon.

- EBA Engineering Consultants. September 30, 2005. Phase I Environmental Site Assessment Former NorthwestelMicrowave Tower Site, Valleyview Subdivision, Whitehorse, Yukon.
- Environmental Dynamics Inc. 2005. Development opportunities and constraints on TKC Settlement Lands. Fox, Lori.
- March 25, 2019. "How long proposed quarry near Whitehorse airport would operate for is unclear". *Yukon News*. Retrieved from: https://www.yukon-news.com/news/how-long-proposed-quarry-near
 - whitehorse-airport-would-operate-for-unclear/
- GeoYukon 2021. Government of Yukon's Digital Map Data (including Land Tenure, Wildlife Key Areas, etc.). Retrieved from: https://mapservices.gov.yk.ca/GeoYukon/

Golder Associates, 1998: Environmental site assessment, Yukon Pipelines Limited, Whitehorse upper tank farm, Whitehorse, Yukon. Prepared for Yukon Pipelines Limited. 962-1818.

Golder Associates. June 11, 2012. Whitehorse Upper Tank Farm (WUTF) Property Community Workshop Series:Summary Report. Prepared for P.S. Sidhu Trucking Ltd.

Golder Associates. January 31, 2013. Impact, Mitigation and Compensation Report for Remediation Work atFormer Whitehorse Upper Tank Farm. Prepared for P.S. Sidhu Trucking Ltd.

- Golder Associates. July 8, 2013. Archaeological Overview Assessment of the Former Whitehorse Upper TankFarm. Prepared for P.S. Sidhu Trucking Ltd.
- Golder Associates. February 11, 2019. Summary of 2018 Soil Remediation and Groundwater Monitoring: FormerWhitehorse Upper Tank Farm. Submitted to Environmental Programs Branch Government of Yukon.

Golder Associates. September 24, 2019. Request for Certificate of Compliance: Portion of Former WhitehorseUpper Tank Farm. Submitted to Environmental Programs Branch Government of Yukon.

Golder, 2020: Request for certificate of compliance for phase 2 portion of the former Whitehorse upper tankfarm.

Government of Yukon. N.D. Yukon Contaminated Sites Registry (online). Retrieved from: https://yukon.maps.arcgis.com/apps/webappviewer/index.html?id=d331e96802054e6aabc8f0d8ed61311a

Government of Canada. February 23, 2022. Whitehorse Airport Zoning Regulations.

- Groundswell Planning. August 2021. Background Report for the Range Point Joint Master Plan. Prepared forKwanlin Dün First Nation and YG Land Development Branch.
- Hillcrest Community Association. April 26, 2020. *Re: Proposed Amendment of the 2010 OCP for Phase 1 of "Tank Farm"*. Letter from to City of Whitehorse Mayor and Council.

Halliday, Keith. January 6, 2022. "Yukon's rent control is so far so predictable." *Yukon News*. Retrieved from: https://www.yukon-news.com/opinion/yukonomist-yukons-rent-control-is-so-far-so-predictable/

Kwanlin Dün First Nation. 2004. Final and Self Government Agreements.

Kwanlin Dün First Nation. 2013. *Listen to the Stories: A History of the Kwanlin Dün: Our Land and People*. Kwanlin Dün First Nation. 2017. Traditional Territory Land Vision.

Kwanlin Dün First Nation. 2020. Community Lands Plan.

Kwanlin Dün First Nation. 2020. Lands Act.

Kwanlin Dün First Nation. 2020. Our Story in Our Words. Figure 1 Publishing. Vancouver, BC, Canada.

Long, Peter. April 20, 2020. Tank Farm OCP Amendment Effects on Walking. Whitehorse Walks.com presentation to City of Whitehorse Mayor and Council.

McLaughlin, Les. N.D. "Hillcrest". Yukon Nuggets. Retrieved from: https://yukonnuggets.com/stories/hillcrest Midnight Arts with Gartner Lee Ltd., Heritage Research Associates Inc. and North Words Consulting. Marwell

Industrial Area Historical Research Project. Prepared for Department of Renewable Resources. April 1999.

Schilder, Cedric. March 30, 2022. E-mail to Jane Koepke. Schilder,

Cedric. June 2, 2022. E-mail to Karmen Whitbread.

- Stanley Associates Engineering Ltd., 1978. City of Whitehorse 1978 groundwater exploration program Hillcrest –Selkirk Areas. Prepared for City of Whitehorse
- Stantec. January 2004. City of Whitehorse Water and Sewer Master Plan. Ta'an
- Kwäch'än Council. 2002. Final and Self Government Agreements.

Ta'an Kwäch'än Council. N.D. A short history of the Ta'an Kwach'an. Retrieved from: https://taan.ca/history/

Tobin, Chuck. June 4, 2012. "Planned development would be sprawling but green". Whitehorse Star. Transport Canada.

2013. Aviation – Land Use in the Vicinity of aerodromes – TP1247. Retrieved from:

https://tc.canada.ca/en/aviation/publications/aviation-land-use-vicinity-aerodromes-tp-1247

Transport Canada. N.D. Noise Exposure Forecast Related Programs. Retrieved from:

https://tc.canada.ca/en/aviation/operating-airports-aerodromes/managing-noise-aircraft/noise-exposure- forecastrelated-programs

WSP. 2020. Whistle Bend Future Areas & Town Square: Environmental & Socio-Economic Assessment Report(YESAB Application). Prepared for City of Whitehorse.

Wikipedia. N.D. Canol Project. Retrieved from: https://en.wikipedia.org/wiki/Canol_Project

YukonBright. April 2022. Teamwork Guideline for the Valleyview South Master Plan Project. Prepared for City ofWhitehorse.

Yukon Bureau of Statistics, 2022. Population Report Fourth Quarter, 2021. Retrieved from

https://yukon.ca/en/population-report-q4-2021

Yukon Department of Environment. January 29, 2015. Certificate of Compliance for the former Upper Tank Farmsite. Yukon Department of Environment. November 29, 2020. Certificate of Compliance for the former Upper TankFarm site.

Yukon Ecoregions Working Group. 2004. Yukon Southern Lakes. In: Ecoregions of the Yukon Territory: Vegetation. C.A.S. Smith, J.C. Meikle and C.F. Roots (eds.), Agriculture and Agri-food Canada, PARCTechnical Bulletin No. 04-01. Summerland, British Columbia, p.214-215.

APPENDIX A

Site Context Maps

A1. Site Ownership

- 1 m Contours
- Parcel
- ----- Easement
 - Road

Utility

- City of Whitehorse
- Government of Yukon
- Private Ownership
- Kwanlin Dün First Nation Ta'an Kwäch'än Council Institutional

A2. Environmental & Special Places

- Study Area Boundary
- Parcel
- ----- Easement
 - Road
- Viewpoint
- Environmentally Sensitive Areas
- – Informal Trails
- Designated Contaminated Area
 - Sub-surface Contamination of Potential Concern*
 - Archaelogical/Historical Resource

APPENDIX B

Master Plan Concepts

B1. Land Use Plan

- Study Area Boundary
- Land Parcels
 - Road
- Mixed-Use Industrial C

Industrial Commercial Mixed-Use Residential Commercial

- Public / InstitutionalParks / Green SpaceEnvironmental Protection
- P Potential Park Location
- P Existing Park Location
- •••• Multi-Use Pathway / Corridor

<u>Residential (gross)</u>

- High Density (55 units/ha)
 Medium Density (20 units/ha)
 Low Density Small Lots (10 units.
 Low Density Large Lots (8 units/k
 - Potential Viewpoint

B2. Transportation

- Study Area Boundary
 - Parcel
- ----- Easement
- Local Road
 - Minor Urban Collector (22.5m)
 Major Urban Collector
- Signalized Intersection

- Signalized Intersection Upgrade
- Multi-Use Paved Pathway (Existing)
- ••• Multi-Use Paved Pathway (New)
- Pedestrian Improvements
- Multi-Way Stop
- Major Roundabout
- Minor Roundabout
- T Potential Transit Stop Location
- T Existing Transit Stop

B3. Servicing

- Study Area Boundary
- Parcel
- ----- Easement
- Power Distribution Line
 Approximate Start/End of Power Pole Reinstallation
- - Potential Poweline Reroute
 - Water Main / Reservoir
- Sanitary Main / Lift Station
- Potential Water Main Tie-in
- Potential Sanitary Main Tie-in
- New Lift Station and Sanitary Force
- New Sanitary Gravity Main
 - Grading Direction
 - Potential Stormwater Management Facility Potential Utility Corridor

Valleyview South Master Plan B4. Phasing Concept

- Study Area Boundary
- Parcel
- Roads
- ----- Phase Boundary No Significant Change
- Can Proceed Independently
 - Phase A
 - Phase B
 - Phase C
- Phase D (Phase C required)
 - Phase E (Phase C required)
 - Phase F (Phase D required)

APPENDIX C

Neighbourhood Character Examples

Figure 1. Neighbourhood character examples - residential

Figure 2. Neighbourhood character examples - mixed-use commercial/residential and Urban Centres

Figure 3. Neighbourhood character examples - parks, open space, and trails

Figure 4. Neighbourhood character examples - utilities

Proposed City of Calgary lift station design using wood and natural design elements (above and below)

Landscaped bioswale feature (middle right) and wet stormwater pond (bottom right)

APPENDIX D

Transportation Impact Assessment

Valleyview South Master Plan Transportation Impact Assessment Study

November 22, 2023 MH# 2203772.00

Presented to:

GROUNDSWELL PLANNING Jane Koepke Principal 19 Donjek Road Whitehorse, Yukon, Y1A3P8 T: 867 335 3346 E: janek@northwestel.net Presented by:

MORRISON HERSHFIELD Stanley Li, M.Sc., P.Eng., PTOE Transportation Engineer Morrison Hershfield Limited 205 Black Street, Suite 210 Whitehorse, Yukon, Y1A 2M8 T: 867 456 4747 E: sli@morrisonhershfield.com

MORRISON HERSHFIELD

TABLE OF CONTENTS

Table of Contents

1.0	Introduction	1
2.0	Baseline Conditions (2023 Existing)	
3.0	Proposed Development	6
4.0	2040 Weekday Peak Hours - Background Traffic Condition	10
5.0	2040 Weekday Peak Hours – Total Traffic Condition	14
6.0	Scenario of Sumanik Drive Closure between Valleyview Dr and the Alaska Highway	17
7.0	Other Key Considerations	19
8.0	Conclusions & Recommendations	23

APPENDIX A - SYNCHRO REPORTS - 2023 EXISTING CONDITION

APPENDIX B – SYNCHRO REPORTS – 2040 BACKGROUND CONDITION

APPENDIX C – SYNCHRO REPORTS – INTERSECTION IMPROVEMENTS (2040 BACKGROUND CONDITION)

APPENDIX D – SYNCHRO REPORTS – 2040 WEEKDAY TOTAL CONDITION

APPENDIX E – SYNCHRO REPORTS – INTERSECTION IMPROVEMENTS (2040 TOTAL CONDITION)

APPENDIX F – SYNCHRO REPORTS – CLOSURE OF SUMANIK DRIVE BETWEEN VALLEYVIEW DRIVE AND ALASKA HIGHWAY

APPENDIX G – VSMP LAND USE PLAN

APPENDIX H – VSMP TRANSPORTATION CONCEPT PLAN

Project Team:

Groundswell Planning Jane Koepke Project Manager Morrison Hershfield Stanley Li, M.Sc., P.Eng., PTOE Traffic Lead Andres Baez, M.U.P., P.Eng. Senior Transportation Planner Chao Qi, M.Sc., M.Eng., EIT Transportation Planner

© 2023 Morrison Hershfield Limited all rights reserved.

Revision History

Rev.	Issue Date	Description
R0	October 13, 2023	Transportation Impact Assessment Draft Report
R1	November 22, 2023	Transportation Impact Assessment Draft Report V1

1.0 Introduction

Morrison Hershfield Limited was retained by Groundswell Planning to conduct a Traffic Impact Assessment (TIA) study for the proposed new development envisioned as part of the Valleyview South Master Plan (VSMP) being led by the City of Whitehorse on behalf of the multiple private, government and First Nation landowners involved.

1.1 Study Scope & Methodology

The traffic impact assessment study was developed following the guidelines and standards from best practices. The main purpose of the traffic impact study is to determine what the impacts may be from the proposed development and to determine what measures may be required to mitigate adverse impacts (if any) and to allow the roadway network to provide a satisfactory Level of Service (LOS). The following scenarios were evaluated in the study:

- 2023 Existing Scenario
- 2040 Full Build Out Scenario
- 2040 Full Build Out Scenario with Sumanik Drive Closure between Valleyview Drive and Alaska Highway

Traffic analyses were conducted using the methods and procedures of the Highway Capacity Manual (HCM) and Trafficware's Synchro 11 software suite for intersections. Typical measures of effectiveness are delay, volume-to-capacity ratio (v/c ratio) and LOS.

The v/c ratio is a ratio of the factored volume to the calculated capacity. It is generally accepted that movements experiencing v/c ratios higher than 0.90 are indicative of improvements needed.

The LOS is determined as a function of the average delay per vehicle. The criteria upon which LOS is determined differs for signalized intersections versus unsignalized intersections. Table 1 shows the relationships between LOS and average delay per vehicle for signalized and unsignalized intersections. Movements experiencing LOS of E or F will require improvements.

TABLE 1. LEVEL OF SERVICE CRITERIA OF SIGNALIZED AND UNSIGNALIZED INTERSECTIONS									
Level of Service (LOS)	Average Delay for UNSIGNALIZED Intersection Movements	Average Delay for SIGNALIZED Intersection Movements							
A	0 – 10 sec. per vehicle	0 – 10 sec. per vehicle							
В	> 10 – 15 sec. per vehicle	> 10 – 20 sec. per vehicle							
С	> 15 – 25 sec. per vehicle	> 20 – 35 sec. per vehicle							
D	> 25 – 35 sec. per vehicle	> 35 – 55 sec. per vehicle							
E	> 35 – 50 sec. per vehicle	> 55 – 80 sec. per vehicle							
F	> 50 sec. per vehicle	> 80 sec. per vehicle							

TABLE 1. LEVEL OF SERVICE CRITERIA OF SIGNALIZED AND UNSIGNALIZED INTERSECTIONS

In addition to delay, LOS and v/c ratio measures, queues for critical movements (if any) are also evaluated to ensure that the 95th percentile queue does not exceed the existing storage length or impact upstream intersections.

1.2 Study Area Description

The study area is situated south of the Valleyview neighbourhood, northwest of the downtown core of Whitehorse, YT, as shown in Figure 1. The planning area is to the northwest of Whitehorse downtown and is bounded by the Alaska Highway to the east and Hamilton Boulevard to the west.

FIGURE 1. LOCATION OF THE PROPOSED DEVELOPMENT SITE

1.3 Existing Road Network Description

The four-lane Alaska Highway is a designated freeway with a posted speed of 60 km/h running north-south to the east of the planning area.

Hamilton Boulevard / Two Mile Hill Road is a four-lane major arterial road with a posted speed of 60 km/h to the west and north of the site.

Sumanik Drive bisects the northern portion of the planning area and is a two-lane collector road running east-west with a posted speed of 50 km/h.

McIntyre Drive is a two-lane collector road intersecting with Hamilton Boulevard to the west of the site.

Range Road is a two-lane collector road intersecting with the Alaska Highway to the east of the site.

In addition, several internal roads within the site will be provided serving as collector roads connecting various land parcels and the external road network described above.

Table 2 below summarizes the information of the above-mentioned roadways surrounding the study site.

#	Name	Classification	Speed Limit					
1	Alaska Highway	Freeway	Multi-Iane divided	60 kph				
2	Hamilton Boulevard / Two Mile Hill Road	Arterial	Multi-lane divided	60 kph				
3	Sumanik Drive	Collector	Two-lane undivided 50 kp					
4	McIntyre Drive	Collector	Two-lane undivided	50 kph				
5	Range Road	Collector	Two-lane undivided	50 kph				
6	Internal Collectors	Collector	Two-lane undivided	50 kph				

TABLE 2. ROADWAYS SURROUNDING THE PROPOSED DEVELOPMENT SITE

The typical intersections of interest of this TIA include:

- #1 McIntyre Drive & Hamilton Boulevard (unsignalized T-intersection, four-way roundabout in the future).
- #2-5 Internal Intersections within the site (unsignalized intersection / roundabout).
- #6 Hamilton Boulevard & Canada Games Centre (CGC) Access (signalized T-intersection, four-way signalized intersection in the future).
- #7 Hamilton Boulevard & Sumanik Drive (four-way signalized intersection).
- #8 Alaska Highway & Hamilton Boulevard (four-way signalized intersection).
- #9 Alaska Highway & Range Road (signalized T-intersection, four-way signalized intersection in the future).
- #10 Two Mile Hill Road & Range Road (four-way signalized intersection).
- #11 Alaska Highway & Sumanik Drive (unsignalized T-intersection limited to right-in/right-out).

The following figure (Figure 2) illustrates the layout of the road network surrounding the VSMP area.

FIGURE 2. ROAD NETWORK SURROUNDING THE PROPOSED SITE

2.0 Baseline Conditions (2023 Existing)

2.1 Traffic Volumes

The turning movement counts of the existing intersections are obtained from the City of Whitehorse for the traffic analysis. The provided traffic volume has been adjusted to the current year (2023) volume conditions with an annual growth rate of 1.3%. The estimation process of the background traffic growth rate can be seen in the following Table 3.

TABLE 3. BACKGROUD TRAFFIC GROWTH RATE ESTIMATION									
Whitehorse 2021 Population	28201 (Statistics Canada)								
Whitehorse 2040 Population	41084 (estimated 2% annual growth)								
Estimated City-wide population growth	12883 (2040 minus 2021's population)								
Valleyview area population grow	4459 (proposed by the development)	Prorated to an annual 0.7% growth rate							
Population growth of other neighbourhoods	8424 (citywide growth minus Valleyview growth)	Prorated to an annual 1.3% growth rate							

In sum, the 2023 existing AM and PM peak hour traffic volumes are illustrated in the following Figure 3.

2.2 Capacity Analysis

Synchro/SimTraffic software version 11 is used to conduct the capacity analysis for the study intersections under 2023 existing condition. The intersections are generally performing satisfactorily with acceptable LOS and v/c ratios. The intersections of Alaska Highway & Hamilton Boulevard and Two Mile Hill Road & Range Road are relatively busier than the other intersections with a lower LOS of C and higher delays and v/c ratios for both the AM and PM peak hours.

Additionally, the westbound left turn movement at Two Mile Hill Road & Range Road intersection is experiencing a LOS E with a relatively high delay of 71.2 s in the AM peak hour. Detailed Synchro reports are included in Appendix A.

				ak Hour			PM Peal		
Inter	rsections	LOS	Delay (s)	Max v/c	95 th Queue (m)	LOS	Delay (s)	Max v/c	95 th Queue (m)
#1 McIntyre Drive & Hamilton Boulevard	Intersection Overall	A	0.7	0.50	-	С	23.2	0.86	-
#6 Hamilton Boulevard & CGC Access	Intersection Overall	А	8.1	0.38	-	A	9.2	0.44	-
#7 Hamilton Boulevard & Sumanik Drive	Intersection Overall	А	2.0	0.26		A	3.5	0.27	-
#8 Alaska Highway & Hamilton Boulevard	Intersection Overall	С	34.2	0,85	Ī	С	25.0	0.69	-
#9 Alaska Highway & Range Road	Intersection Overall	A	4.0	0.18	-	А	6.7	0.31	-
#10 Two Mile	Intersection Overall	С	22.0	0.79		С	22.6	0.84	-
Hill Road & Range Road	Critical Movements WBL	E	71.2	0.73	34.7	-	-	-	-
#11 Alaska Highway & Sumanik Drive	Intersection Overall	A	0.7	0.14	-	А	0.4	0.12	-

TABLE 4. 2023 EXISTING CONDITION INTERSECTION PERFORMANCE (WEEKDAY AM AND PM PEAKS)

Note: Internal intersections (ID #2-5) within the site are not included the 2023 existing condition analysis.

3.0 Proposed Development

3.1 Proposed Development

As per the VSMP final land use plan (Appendix G), the development consists of multiple land parcels primarily designated for residential uses. Additionally, certain land parcels incorporate mixed-use developments with residential and commercial purposes, along with institutional land uses. Table 5 and Table 6 provide summaries of the land uses for each land parcel.

TABLE 5. PROPOSED LAND USES OF VSMP DEVELOPMENT

		re	sidential	areas (net)	areas - n	nixed use		# of net	
Parcel/property	Gross Parcel Size (ha)	low density (ha)	low- med density (ha)	medium density (ha)	high density (ha)	total hectares	max buildable area	GFA for commercial (m2)	hectares for institutional uses	
Tank Farm (Lots 429/430)	50.6	8.7	8.5	6.9	8.2					
Lot 262-2										
KDFN C-117B - mixed use	5.23					3.40	3.40	5348		
KDFN C-141B - mixed use	5.01					3.26	3.26	5123		
Lot 431 (regraded portion)	1.5			0.975						
YG/City land (north of C-117B)	3.2								1.12	
TKC C-30B - mixed use	9.32					6.06	6.06	9530		
TKC C-30B - public/institutional	3								1.05	
Total						12.71		20000		

Note that, for the purposes of the TIA, the portions of First Nation Settlement Land not allocated for public/institutional use were assumed to be mixed use residential-commercial, with ground floor commercial and one to two stories of residential above. In reality, the future of these mixed-use areas is not well defined at present.

	High density units	Pop'n (high density)	Medium density units		Low- med density units	Pop'n (low-med density)		Pop'n (low density)	Totals	Units per gross ha	Population subtotals
Tank Farm (Lots 429/430)	615	1439	193.2	452	127.5	298	87	204	1022.7	20.21	2393.12
Lot 262-2	116	271	104	243					220	65.87	514.80
KDFN C-117B - mixed use			170	398					170	32.5	397.74
KDFN C-141B - mixed use			163	381					163	32.5	381.01
Lot 431 (regraded portion)			27.3	64					27.3	28.0	63.88
TKC C-30B (residential portion of mixed use)			303	709					303	32.5	708.79
Total units by housing type	731		960.2		127.5		87		1905.7		
Population by housing type		1711		2247		298		204	4459		

TABLE 6. PROPOSED UNIT & POPULATION COUNTS OF VSMP DEVELOPMENT

3.2 Trip Generation (Weekday AM and PM Peak Hours)

The ITE Trip Generation Manual 11th Edition is used to estimate the trips generated by the proposed development. Table 7 summarizes the estimated trip generation for each land parcel resulting from the development. The ITE trip generations used for the study include:

- Land Use: 210 Single-Family Detached Housing. A single-family detached housing site includes any single-family detached home on an individual lot.
- Land Use: 220 Multifamily Housing (Low-Rise): Low-rise multifamily housing includes apartments, townhouses, and condominiums located within the same building with at least three other dwelling units and that have two or three floors (levels).
- Land Use: 221 Multifamily Housing (Mid-Rise): Mid-rise multifamily housing includes apartments and condominiums located in a building that has between four and 10 floors of living space.
- Land Use: 230 Low-Rise Residential with Ground-Floor Commercial: Low-rise residential with ground-floor commercial is a mixed-use multifamily housing building with two or three floors of residential living space and commercial space open to the public on the ground level.

The traffic volumes of each land parcel are calculated based on the number of units of each land use type within the parcel and the associated ITE trip generation formulas. For example, the traffic volumes generated from the Tank Farm (Lots 429/430) parcel are estimated using the following three land use types within the parcel:

- 215 (127.5 + 87) low and low-medium density units (ITE Land Use 210) and associated ITE trip generation formulas
- 193 medium density units (ITE Land Use 220) and associated ITE trip generation formulas
- 615 high-density units (ITE Land Use 221) and associated ITE trip generation formulas

Then, the traffic volumes generated from this particular land parcel are calculated by adding the estimated volumes of all land use types together for each volume category. These volume categories include daily traffic volumes, a.m. peak hour traffic volumes (total, entering the site, and exiting the site), p.m. peak hour traffic volumes (total, entering the site, and exiting the site). The results can now be distributed to the road network based on the methodology discussed in Section 3.3.

Proposed			ITE Vel	nicle Trip Ge	eneration Rates							Total	Generat	ed Trips	To	otal Distr	ibution (of Gene	rated Tr
Land Uses	Units		(peak hours a	re for peak	hour of adjacent street	traffic unless high	lighted)				Site Plan								
Former Tank Farm (Lots 429/430)		ITE comparable Land Use	ITE units	On a	Daily	АМ	РМ	AM in	AM Out PM	In PM Ou	Provided It Units	Daily	AM Hour	PM Hour	AM In		Pass- By		PM Out
roposed Development Area																			
ow and Low-Med Density Units (Single-Detached House	s) Dwelling Units	Single-Family Detached Housing (210)	Dwelling Units	weekday	Ln(T)=0.92Ln(X)+2.71	T=0.71(X)+4.8	Ln(T)=0.96Ln(X)+0.20	25%	75% 63	i% 379	215 (12) "low-me density' + 8 "low density'	2,103	157	212	39	118	0	134	78
ledium Density Units (Townhouses)	Dwelling Units	Multifamily Housing Low-Rise (220)	Dwelling Units	weekday	T=6.41(X)+75.31	T=0.31(X)+22.85	T=0.43(X)+20.55	24%	76% 63	379	% 19:	1,312	83	104	20	63	0	66	38
ligh Density Units (Multi-Storey Apartments)	Dwelling Units	Multifamily Housing Mid-Rise (221)	Dwelling Units	weekday	T=4.77(X)-46.46	T=0.44(X)-11.61	T=0.39(X)+0.34	23%	77% 6	% 39	61	2,887	259	240	60	199	0	146	94
											Tota	6,302	499	556	119	380	0	346	210
Proposed			ITE Vel	nicle Trip Ge	eneration Rates							Total	Generat	ed Trips	To	otal Distr	ibution (of Gene	rated Tr
Land Uses	Units		(peak hours a	re for peak	hour of adjacent street	traffic unless high	lighted)				Site Plan								
Lot 262-2		ITE comparable Land Use	ITE units	On a	Daily	AM	РМ	AMIN	AM Out PM		Provided	Daily	AM Hour	PM Hour	AMIN	AM Out	Pass- By		PM Out
			TTE UNITS	Olia	Daily	AW	PW	AMIII	Am Out PM	III PW OC	It Units	Daily	Houi	PM HOU	AWIT	Out	by		PWIOU
roposed Development Area	Dwalling Light	Multifemily Lleusing Lew Dise (200)	Durallia a Li-lita	weekdow	T-8 44(V), 75 04	T=0.31(X)+22.85	T=0.43(X)+20.55	0.451	76% 63	0/ 07/	× 10	742	55	65	13	42	0	44	04
ledium Density Units (Townhouses)			Dwelling Units		T=6.41(X)+75.31 T=4.77(X)-46.46								55 39	65 46	13 9	42 30	0	41 28	24 18
ligh Density Units (Multi-Storey Apartments)	Dwelling Units	Multifamily Housing Mid-Rise (221)	Dwelling Units	weekday	1=4.77(X)-46.46	1=0.44(X)-11.61	1=0.39(X)+0.34	23%	11% 6	39	% 110 Tota		39 94	46	9 22	30 72	0	28 69	18 42
		l								_	Tota	1,249	94		- 22	12	0	09	42
		<u></u>																	
Deserved		<u></u>	175.14-1	Inter Tala Co	aneration Rates			_		_		Total	Generat	d Trine	-		ibution		
Proposed Land Uses	Units			neration Rates hour of adjacent street	And the sector of black	linker di				Site Plan	1014	Generati	ed mps	10	otal Disti	IDUUON (or Gene	rated 1 r	
Land Uses	Units		(peak nours a	re for peak	nour of adjacent street	tranic unless nigh	nightea)			-	Provided		AM	-		AM	Pass-	PM	
KDFN C-117B and Adjacent Public Land		ITE comparable Land Use	ITE units	On a	Daily	AM	РМ	AM in	AM Out PM	In PM Ou	It Units	Daily	Hour	PM Hour	AM In	Out	By		PM Out
roposed Development Area																			
edium Density Units with Commercial	Dwelling Units	Low-Rise Residential with Ground-Floor Commercial - GFA (25-65k) (230	Dwelling Units	weekday	Not Provided**	0.57	0.46	23%	77% 65	i% 359	% 17(1,213	97	78	22	75	0	51	27
G/City land (north of C-117B)*												1,030	95	115	55	40	0	50	65
											Tota	2,243	192	193	77	115	0	101	92
Proposed					eneration Rates							Total	Generat	ed Trips	IC	otal Distr	ribution (of Gene	rated Tr
Land Uses	Units		(peak hours a	re for peak	hour of adjacent street	traffic unless high	lighted)				Site Plan								
KDFN C-141B		ITE comparable Land Use	ITE units	On a	Daily	AM	PM		AM Out PM		Provided It Units	Daily	AM Hour	PM Hour		AM Out	Pass- By		PM Out
roposed Development Area			ine dinto	on a	Cuny				ran out ran		Units	Duny	incur			out			- III Out
ledium Density Units with Commercial	Dwelling Units	Low-Rise Residential with Ground-Floor Commercial - GFA (25-65k) (230	Dwelling Linits	weekday	Not Provided**	0.57	0.46	23%	77% 65	i% 359	% 16	1,163	93	75	21	72	0	49	26
	Differing of its		Direning onits	Weekday	Hot Houded	0.01	0.40	2070			Tota		93	75	21	72	0	49	26
										_	100	1,100							2.0
													-						
Proposed	1		ITE Vel	nicle Trip Ge	eneration Rates							Total	Generat	ed Trips	Т	otal Distr	ibution (of Gene	rated Tr
Land Uses	Units				hour of adjacent street	traffic unless high	lighted)				Site Plan								
											Provided		AM			AM	Pass-		
Lot 431		ITE comparable Land Use	ITE units	On a	Daily	AM	РМ	AM In	AM Out PM	In PM Ou	It Units	Daily	Hour	PM Hour	r AM In	Out	By	In	PM Out
			1											-					
		Multifamily Housing Low-Rise (220)	Dwelling Units	weekday	T=6.41(X)+75.31	T=0.31(X)+22.85	T=0.43(X)+20.55	24%	76% 63	379		248	31	32	7	24	0	20	12
	Dwelling Units									_	Tota	248	31	32	7	24	0	20	12
	Dwelling Units																		
	Dwelling Units											,	_						
roposed Development Area edium Density Units (Townhouses)	Dwelling Units																		
edium Density Units (Townhouses)					eneration Rates							Total	Generat	ed Trips	Ī	otal Distr	ibution (of Gene	rated Tr
edium Density Units (Townhouses)	Units				eneration Rates hour of adjacent street	traffic unless high	lighted)				Site Plan	Total	Generati	ed Trips	Ic				rated Tr
edium Density Units (Townhouses)		ITE comparable Land Use				traffic unless high	lighted) PM	AM In	AM Out PM		Provided	<u>Total</u> Daily	Generate AM Hour	ed Trips PM Hour		AM Out	ibution Pass- By	PM	rated Tr PM Out
edium Density Units (Townhouses) Proposed Land Uses TKC C-30B		ITE comparable Land Use	(peak hours a	re for peak	hour of adjacent street			AM In	AM Out PM	In PM Ou	Provided		AM			AM	Pass-	PM	
edium Density Units (Townhouses) Proposed Land Uses TKC C-30B roposed Development Area	Units		(peak hours a ITE units	on a	hour of adjacent street Daily		PM	AM In			It Units	Daily	AM Hour			AM Out	Pass-	PM	
edium Density Units (Townhouses) Proposed Land Uses TKC C-30B	Units	ITE comparable Land Use Low-Rise Residential with Ground-Floor Commercial - GFA (25-65k) (230	(peak hours a ITE units	on a	hour of adjacent street	AM	PM				It Units	Daily	AM	PM Hour	r AM In	AM	Pass- By	PM In	P M Out

visitation times 2.

** Some daily trip generation rates are not provided by ITE, in these cases, daily traffic is estimated using the above-mentioned AM peak hour to daily traffic ratio, which is 8%.

3.3 Trip Distribution

Trip distribution is used to ascertain the directional percentages of vehicles entering and leaving the proposed site. To estimate trip distribution rate patterns, **the city's employment projections for** 2040 horizon year are considered, as detailed in Table 8, in accordance with the nature of the proposed development.

Surrounding Road Network	Neighbourhoods	2040 Employment Projections	Proposed Trip Distribution from Subject Development
Alaska Highway North	Porter Creek, Kulan, Taylor, Crestview, Whistle Bend (half), Whistle Bend Bench (half), Hidden Valley, McPherson, Wilderness Area	2,697	9.75%
Alaska Highway South	Riverdale, Airport, Yukon Energy hydroelectric and battery storage facilities, Hillcrest Industrial, Hillcrest, West of Airport, South of Robert Service Way, Copper, Fox Haven, Pineridge, Spruce Hill, Wolf Creek, Mary Lake, Cowley Creek	6,125	22.13%
Two Mile Hill Road East	Downtown, Marwell	14,970	54.09%
Hamilton Boulevard South	McIntyre, Ingram, Arkell, Logan, Granger, Copper Ridge, South Residential Growth Area	1,550	5.6%
Range Road North	Range Rd & Two Mile Hill area, Takhini, Whistle Bend (half), Whistle Bend Bench (half)	1,973	7.13%
Canada Games Centre (CGC)	CGC	180	0.65%
Internal	Valleyview, Valleyview South	180	0.65%
	Total	27,675	100%

TABLE 8. TRIP DISTRIBUTION ASSUMPTIONS

The traffic volume distribution of the VSMP development site when fully built-out is illustrated in Figure 4. It is essential to note that the Whitehorse Transportation Master Plan (TMP) proposes Hamilton Boulevard / Two Mile Hill Road to be an important transit corridor with transit signal priorities and more frequent transit services. According to the plan's projections, it is expected that public transit will accommodate approximately 15% of the overall traffic through the corridor, which includes both background and development-generated traffic, rather than private vehicles.

4.0 2040 Weekday Peak Hours - Background Traffic Condition

4.1 2040 Weekday Peak Hours - Background Condition Traffic Volumes

Background traffic volumes represents the growth in traffic over time that is unrelated to the proposed development. For the 2040 horizon year, background traffic volumes are projected using a 1.3% annual growth rate from 2023 traffic levels. Figure 5 illustrates the estimated background traffic volumes for the 2040 horizon year.

4.2 2040 Weekday Peak Hours - Background Condition Capacity Analysis

Background traffic conditions indicate the performance of existing road networks in future years, assuming the proposed development is not in place. The background traffic capacity analysis was conducted for both AM and PM peak hours on a typical weekday. Summaries of intersection capacity analysis of the 2040 horizon are included in Table 9. Detailed Synchro results of background traffic capacity analyses are included in Appendix B.

As indicated by the capacity analysis results, it is projected that the intersections of Alaska Highway & Hamilton Boulevard and Two Mile Hill Road & Range Road will face operational challenges when subjected to the 2040 background traffic conditions. To provide more specific details, during the AM peak hour, the westbound left and southbound left turn movements at Alaska Highway & Hamilton Boulevard are anticipated to experience a Level of Service (LOS) rating of F, characterized by high delays, traffic volume exceeding capacity, and long queues. Similarly, the westbound left turn movement at Two Mile Hill Road & Range Road is expected to be over capacity during the AM peak hour. In contrast, the remaining intersections are expected to maintain acceptable LOS and v/c ratios under the 2040 background traffic conditions.

					ak Hour		PM Peak Hour					
Inte	rsections		LOS	Delay (s)	Max v/c	95 th Queue (m)	LOS	Delay (s)	Max v/c	95 th Queue (m)		
#1 McIntyre Drive & Hamilton Boulevard*	Intersection	Overall	В	-	0.71		В	-	0.75	-		
#6 Hamilton Boulevard & CGC Access**	Intersection	Overall	A	8.7	0.43	Ţ	В	10.1	0.50	-		
#7 Hamilton Boulevard & Sumanik Drive	Intersection Overall		А	3.3	0.32	-	A	3.7	0.30	-		
#8 Alaska	Intersection	Overall	D	49.3	1.12	-	С	28.5	0.81	-		
Highway &	Critical	WBL	F	122.0	1.12	148.1	-	-	-	-		
Hamilton Boulevard	Movements	SBL	F	97.3	1.10	287.2	-	-	-	-		
#9 Alaska Highway & Range Road***	Intersection	Overall	A	5.0	0.22	-	A	6.6	0.31	-		
#10 Two Mile	Intersection	Overall	C	29.0	0.98	-	С	31.8	0.97	-		
Hill Road & Range Road	Critical Movements	WBL	F	127.7	0.98	43.5	-	-	-	-		
#11 Alaska Highway & Sumanik Drive	Intersection	Overall	A	0.7	0.17	-	А	0.3	0.15	-		

TABLE 9. 2040 BACKGROUND INTERSECTION PERFORMANCE (WEEKDAY AM AND PM PEAK HOURS)

Note: Internal intersections (ID #2-5) within the site are not included in the 2040 background condition analysis. * The intersection of McIntyre Drive & Hamilton Boulevard will be upgraded from a 3-way stop-controlled intersection to a four-way roundabout by 2040. ** The intersection of Hamilton Boulevard & CGC Access will be upgraded from a 3-way signalized intersection to a four-way signalized intersection by 2040.
 *** The intersection of Alaska Highway & Range Road will be upgraded from a 3-way signalized intersection to a four-way signalized intersection by 2040.

4.3

2040 Weekday Peak Hours - Recommended Intersection Improvements for the Background Condition

The operational issues of the intersections of Alaska Highway & Hamilton Boulevard and Two Mile Hill Road & Range Road under 2040 background condition need to be addressed. Recommended improvements are outlined in Table 10, and the updated lane configurations are illustrated in Figure 6.

Intersection	Improvement Types	Recommended Improvements (compared with the existing condition)
Two Mile Hill Road & Range Road	Intersection Configurations	 Revise the southbound approach by converting the existing configuration of one through & left turn lane, plus one dedicated right turn lane, into one dedicated left turn lane and one lane accommodating both through and right turns. Add a through lane to the eastbound approach and a dedicated right turn lane to the westbound approach to accommodate the through traffic.
	Signal Timing / Phasing	 Introduce a protected left turn phase for the westbound approach, converting it into a protected + permissive left turn. Update the signal timing plan for both the AM and PM peak hours.
Alaska Highway & Hamilton Boulevard	Intersection Configurations	 Implement an additional dedicated left turn lane for westbound and southbound approaches, creating a double left turn configuration. It is recommended to convert the northbound right turn, previously regulated by a yield, into a free-flowing movement. Provide overpass to pedestrian and cyclist movements.
	Signal Timing / Phasing	• Update the signal timing plan for both the AM and PM peak hours.
Hamilton Blvd	The T	Two Mile Hill Rd Hamilton Blvd Hamilton Hamilton Hamilton Blvd Hamilton Hamilto

TABLE 10. 2040 BACKGROUND CONDITION RECOMMENDED IMPROVEMENTS

FIGURE 6. LANE CONFIGURATION UPGRADE FOR THE IMPROVEMENT OF FAILED INTERSECTIONS (BACKGROUND CONDITION)

With the aforementioned enhancements, we anticipate that the operational challenges at the two intersections in question will be successfully resolved, thereby ensuring satisfactory performance for all traffic movements for the 2040 background traffic condition. The improved intersection performance is detailed in Table 11. Detailed Synchro reports are included in Appendix *C*.

TABLE TT. 2040 BACKGOURND TRAFFIC INTERSECTION PERFORMANCE (IMPROVED)										
Intersections				AM Pea	PM Peak Hour					
			LOS	Delay (s)	Max v/c	95 th Queue (m)	LOS	Delay (s)	Max v/c	95 th Queue (m)
Alaska Highway	Intersection Overall		D	37.8	0.85	-	С	22.2	0.77	-
& Hamilton Boulevard	Critical Movements	None	-	-	-	-	-	-	-	-
Two Mile Hill	Intersection Overall		С	29.6	0.73	-	С	22.1	0.87	
Road & Range Road	Critical Movements	None	-	-	-	-	-	-	-	-

TABLE 11. 2040 BACKGOURND TRAFFIC INTERSECTION PERFORMANCE (IMPROVED)

5.0 2040 Weekday Peak Hours – Total Traffic Condition

5.1 2040 Weekday Peak Hours - Total Traffic Condition Traffic Volumes

The 2040 horizon year total traffic volumes are the sum of the development traffic volumes (Figure 4) and the 2040 background traffic volumes (Figure 5), as illustrated in Figure 7.

FIGURE 7. 2040 TOTAL TRAFFIC VOLUME DIAGRAM – WEEKDAY AM PEAK (PM PEAK)

5.2 2040 Weekday Peak Hours - Total Traffic Condition Capacity Analysis

The 2040 horizon year total traffic capacity was evaluated for both AM and PM peak hours on a typical weekday. Summaries of intersection capacity analysis are included in Table 12. The 2040 total traffic condition analysis is based on the 2040 total traffic volume under the improved background road network.

All internal intersections within the site are projected to maintain satisfactory operational conditions in the year 2040. The external intersections of McIntyre Drive & Hamilton Boulevard, Hamilton Boulevard & CGC Access, Hamilton Boulevard & Sumanik Drive, Alaska Highway & Range Road, and Alaska Highway & Sumanik Drive are expected to experience increased traffic due to the addition of site-generated traffic; nevertheless, they are expected to continue operating under appropriate conditions.

Conversely, the performance of the intersections at Alaska Highway & Hamilton Boulevard and Two Mile Hill Road & Range Road is forecasted to further deteriorate under the 2040 total traffic conditions. These two intersections are anticipated to have several turning movements operating with the LOS of E during either the AM or PM Peak hour. Detailed Synchro results of the 2040 total traffic capacity analyses are included in Appendix D.

TABLE 12. 2040 TOTAL TRAFFIC CONDITION INTERSECTIONS PERFORMANCE (WEEKDAY AM PEAK AND PM PEAK HOUR)

				AM Pea	PM Peak Hour					
Intersections		LOS	Delay (s)	Max v/c	95 th Oueue (m)	LOS	Delay (s)	Max v/c	95 th Queue (m)	
#1 McIntyre Drive & Hamilton Boulevard	Intersection	Overall	В	~	0.74	-	С	-	0.81	-
#2 Internal Intersection 1	Intersection	Overall	А	7.5	0.07	-	А	7.5	0.10	-
#3 Internal Intersection 2	Intersection	Overall	A	3.0	0.11	-	А	2.7	0.06	-
#4 Internal Intersection (Sumanik Drive & Valleyview Drive)	Intersection	Overall	A	8.1	0.16	-	A	8.0	0.18	-
#5 Internal Intersection 3	Intersection Overall		A	-	0.11	-	А	-		0.08
#6 Hamilton Boulevard & CGC Access	Intersection Overall		В	14.3	0.61	-	В	12.3	0.71	-
#7 Hamilton Boulevard & Sumanik Drive	Intersection		A	5.1	0.39	-	А	3.8	0.32	-
#8 Alaska	Intersection		D	47.7	0.99	-	С	34.2	0.77	-
#6 Alaska Highway &		EBT	E	68.8	0.99	369.4	-	-	-	-
Hamilton	Critical	WBL	E	59.5	0.67	97.7	-	-	-	-
Boulevard	Movements	NBT	E	65.1	0.54	42.7	E	58.1	0.58	50.1
		SBL	E	71.8	0.91	194.5	E	61.9	0.77	102.8
#9 Alaska Highway & Range Road	Intersection Overall		В	17.8	0.77	-	В	14.2	0.69	-
#10 Two Mile	Intersection Overall		С	30.4	0.97	-	D	36.3	1.04	-
Hill Road & Range Road	Critical Movements	WBT	-	-	-	-	E	59.3	1.04	191.3

Note: According to the provided transportation concept, Internal Intersection 3 is planned to be constructed as a traffic circle in 2040, while other internal intersections, including Internal Intersection 1, Internal Intersection 2, and Sumanik Drive & Valleyview Drive, are designated as stop-controlled intersections.

5.3 2040 Weekday Peak Hours - Recommended Intersection Improvements for the Total Condition

The operational issues of the intersections of Alaska Highway & Hamilton Boulevard and Two Mile Hill Road & Range Road under the 2040 total condition need to be addressed. Recommended improvements are outlined in Table 13, and the updated lane configurations are illustrated in Figure 8.

	ADLL 13. 2040 10	
Intersection	Improvement Types	Recommended Improvements (compared with the background improved condition)
Two Mile Hill Road & Range Road	Intersection Configurations	-
	Signal Timing / Phasing	• Update the signal timing plan for both the AM and PM peak hours.
Alaska Highway & Hamilton Boulevard	Intersection Configurations	Introduce an extra through lane for the eastbound approach to accommodate the growing volume of through traffic.
	Signal Timing / Phasing	Update the signal timing plan for both the AM and PM peak hours.
Hamilton Blvd	Two Mile Hill Rd 4 Two Mile Hill Rd 4 True Range Rd True Range Rd True Range Rd	Existing Configuration

TABLE 13. 2040 TOTAL CONDITION RECOMMENDED IMPROVEMENTS

FIGURE 8. LANE CONFIGURATION UPGRADE FOR THE IMPROVEMENT OF FAILED INTERSECTIONS (TOTAL CONDITION)

With the recommended improvements outlined above, it is expected that the operational issues at the two subject intersections will be effectively addressed, ensuring acceptable performance for all traffic movements. The following Table 14 shows the improved intersection performance. The performance of both intersections has shown improvement, with the overall intersection LOS reaching C or D and minimum expected critical movements. Detailed Synchro reports are included in Appendix E.

				AM Pea	PM Peak Hour					
Intersections		LOS	Delay (s)	Max v/c	95 th Queue (m)	LOS	Delay (s)	Max v/c	95 th Queue (m)	
Alaska Highway	Intersection	Overall	D	37.3	0.81	-	С	26.3	0.88	-
& Hamilton Boulevard	Critical Movements	NBT	E	53.4	0.63	96.6	E	67.0	0.72	50.5
Two Mile Hill	Intersection	Overall	С	32.6	0.76	-	С	25.6	0.88	-
Road & Range Road	Critical Movements	None	-	-	-	-	-	-	-	-

It is worth noting that the northbound through traffic at Alaska Highway & Hamilton Boulevard may experience a relatively low LOS of E. However, given that the delay, v/c ratio, and gueue length for this movement are expected to remain within acceptable limits, it is unlikely that significant issues will be encountered.

It is important to highlight that the City of Whitehorse and Government of Yukon have commenced the design process for improving the two subject intersections in the short to medium term. Their proposed improvements may not be the same as the improvements proposed in this TIA, but it is expected that the improvements will reach similar LOS for both intersections at a minimum. These enhancements are essential to ensure that, upon completion, both intersections will operate with acceptable LOS ratings and v/c ratios. Ongoing, close monitoring of the updated intersections should be undertaken, given their critical location and high traffic volume.

Scenario of Sumanik Drive Closure between Valleyview Dr and the Alaska 6.0 Highway

An additional scenario involving the closure of Sumanik Drive between Valleyview Drive and the Alaska Highway is also investigated to assess the traffic implications resulting from alterations to the internal network. The concept of this scenario is shown in the following Figure 9.

FIGURE 9. CLOSURE OF THE EAST SECTION OF SUMANIK DRIVE

The closure of the aforementioned road segment will lead to the closure of the intersection at Alaska Highway & Sumanik Drive. The current configuration of this intersection operates exclusively as a right-in/right-out (RIRO) access point. Incoming traffic into the VSMP area is directed through a right turn movement from southbound Alaska

namely Sumanik Drive & Valleyview Drive and Internal Intersection 2. The imp network and distribution of traffic volume, as depicted in Figure 10 below.

FIGURE 10. IMPACTED INTERSECTIONS AND TRAFFIC DISTRIBUTION BEFORE AND AFTER THE CLOSURE OF SUMANIK DRIVE EAST (2040 TOTAL TRAFFIC CONDITIONS)

Synchro analysis have been conducted for the outlined scenario for the total traffic conditions for the year 2040. The goal is to evaluate the operational conditions of the affected intersections, with a particular focus on the Alaska Highway & Range Road intersection, both before and after the closure of Sumanik Drive. The comparative findings are presented in Table 15 below.

TABLE 15. COMPARISON OF THE OPERATION CONDITIONS OF THE AFFECTED INTERSECTIONS BEFORE AND AFTER THE CLOSURE OF SUMANIK DRIVE (2040)

Intersections			AM Peak Hour				PM Peak Hour				
		LOS	Delay (s)	Max v/c	95 th Queue (m)	LOS	Delay (s)	Max v/c	95 th Queue (m)		
Alaska Highway & Range Road	Intersection Overall	C (B)	20.5 (17.8)	0.85 (0.77)	-	В (В)	15.1 (14.2)	0.75 (0.69)	-		
After (Before)	Critical None Movements (None)	-	-	-	-	-	-	-	-		
Sumanik Drive & Valleyview Drive	Intersection Overall	A (A)	8.0 (8.1)	0.15 (0.16)	-	A (A)	7.9 (8.0)	0.16 (0.18)	-		
After (Before)	Critical None Movements (None)	-	-	-	-	-	-	-	-		
Internal Intersection 2	Intersection Overall	A (A)	2.3 (3.0)	0.16 (0.11)	-	A (A)	2.0 (2.7)	0.10 (0.06)	-		
After (Before)	Critical None Movements (None)	-	-	-	-	-	-	-	-		

The closure of Sumanik Drive between Valleyview Drive and the Alaska Highway is expected to introduce additional traffic demands at the nearby Alaska Highway & Range Road intersection. However, the impact appears to be relatively minimal, with slight adjustments in delays and v/c ratios, and no critical traffic movements observed as the affected traffic integrates into the intersection. Consequently, it can be inferred that the Alaska Highway & Range Road intersection can maintain acceptable operating conditions after the closure of Sumanik Drive. Additionally, we anticipate that the closure will not significantly affect the operation of the internal intersections, namely Sumanik Drive

& Valleyview Drive and Internal Intersection 2 within the site. For a more detailed Synchro analysis result of this scenario, please refer to Appendix F.

7.0 Other Key Considerations

7.1 Access Intersection Control Treatments

The VSMP transportation concept plan can be found in Appendix H. The signalized intersections of Hamilton Boulevard & CGC Access and Alaska Highway & Range Road will need to be upgraded from 3-way to 4-way. It is also assumed that the signalized intersection of Hamilton Boulevard & Sumanik Drive will remain unchanged, although some intersection improvements should be explored to address safety concerns for Valleyview residents taking westbound right turns from Sumanik Drive. The intersection of Hamilton Boulevard & McIntyre Drive is proposed to be upgraded to a roundabout with all turning movements allowed.

7.2 Internal Intersection Control Treatments

Based on the anticipated traffic volumes within the internal roadway network, either stop control or small roundabout (traffic circle) is needed at intersections where collector roads intersect. Specifically, Internal Intersection 1, Internal Intersection 2, and the intersection of Sumanik Drive & Valleyview Drive should be converted to stop-controlled intersections. Specifically, Internal Intersection 1 and Sumanik Drive & Valleyview Drive will be converted to all-way stop-controlled intersections, and Internal Intersection 2 will be converted to a one-way stop-controlled T-intersection. Internal Intersection 3, located near Hamilton Boulevard & Sumanik Drive, is to be configured as a traffic circle. Additionally, two-way stop control is recommended for intersections where a local road intersects with a collector road.

7.3 Official Community Plan Guidance

Section 11.0 - Transportation and Mobility in **the City's recently adopted Official Community Plan** contains several policies relevant to the transportation aspects of VSMP, with a focus on active and public transportation. Noteworthy policies include:

- 11.2 Active transportation modes (i.e., pedestrians and cyclists) are prioritized over shared and personal modes.
- 11.7 The City will encourage a shift towards increased use of active and shared transportation modes.
- 11.11 A Complete Streets approach will be applied to roadway reconstruction, upgrades, and new construction.
- 11.12 The design of the transportation network will support surrounding land use, consider the needs of all users, incorporate multi-modal movements, and include opportunities for decorative street furniture or public art, where appropriate.
- 11.17 The City will ensure that new developments are designed and connected to the active transportation network in a way that supports the hierarchy of transportation modes included (in 11.2).
- 11.18 Initiatives that remove physical barriers, address safety concerns, close route gaps, improve winter maintenance, and improve lighting for active transportation modes throughout the community will be supported, where feasible.
- 11.20 The City will ensure that the active transportation network is designed with connections to support year-round multi-modal movements.
- 11.21 The City will work with community partners to enhance the overall active transportation network connectivity to destinations such as schools, hospital, and major workplaces.

It is worth noting that the final Master Plan will provide additional guidance. Given the preliminary design stage of the project, there are opportunities to ensure **the City's OCP policies are** reflected in this development. It is advisable for the development to prioritize the promotion and advancement of active transportation and public transportation usage.

7.4 Internal Road Classification

To determine the suitable road classifications for the internal roads on the site, we conducted an estimation of the Average Annual Daily Traffic (AADT) as depicted in Figure 12. Our analysis revealed that the majority of the internal roads exhibit AADT values falling within the range of 1,500 to 3,000, suggesting that designating them as minor collector roads would be

sufficient. However, it is worth noting that the easternmost road segment, which connects the intersection of Alaska Highway and Range Road, stands out with a notably higher AADT of 7,500. Consequently, it is advisable to classify this specific road segment as a major collector road, given its higher traffic volume.

7.5 Active Transportation Connections

To ensure the integration to the existing and proposed city-wide active transportation network, the VSMP concept plan includes an extensive AAAA (Always Available for All Ages and Abilities) multi-use pathway (MUP) network. Figure 12 presents a conceptual analysis of key desire lines within the VSMP area, reflecting the following travel patterns:

- Anticipated major east-west movement through the VSMP area to the Alaska Highway for VSMP residents as well as McIntyre and other "above the airport" neighbourhood residents using the Hamilton Boulevard MUP.
- Existing and anticipated north-south movement between the VSMP area, Hillcrest, Granger and Canada Games Centre/Mount McIntyre Recreation Centre area.

- Existing movement between Valleyview and the Airport Trail, Canada Games Centre/Mount McIntyre Recreation Centre, and the Mount Mac public trail network.
- Existing and anticipated north-south movement between Hillcrest and Granger neighbourhoods and the VSMP area and destinations beyond (north and east).
- Anticipated northwest movement between the VSMP neighbourhood and the Mount Mac public trail network.

FIGURE 12. DESIRE ACTIVE TRANSPORTATION LINES WITHIN THE VSMP AREA

The east-west **MUP reflects the general concept proposed in the City's Bicycle Network Plan (2019)**, shown in Figure 13. The internal N-S active transportation facilities will be able to provide additional N-S active transportation connections (besides Alaska Highway and Hamilton Boulevard) within the neighbourhood, which will improve connectivity and safety for active transportation modes. The concept also addresses deficiencies in the active transportation network for Valleyview and its lack of logical (and convenient) connection to the public trails at Mount McIntyre, which will become more important if and when the adjacent greenspace to the west is developed.

FIGURE 13. PROPOSED CITY-WIDE ACTIVE TRANSPORTATION NETWORK

The Cycling Association of Yukon, in partnership with Hillcrest Community Association, is exploring the potential for a highway underpass at the crossing location indicated in Figure 13. Should this location prove viable, and funding is secured to proceed, the east-west routing could be altered. For the time being, the team assumes that the Airport Trail connection point is at the Alaska Highway & Range Road intersection. Additionally, there is an existing buffered bike lane along Sumanik Drive between Hamilton Boulevard and Alaska Highway that should be maintained. The Master Plan allows for the future consideration of closing the easternmost segment of Sumanik Drive to vehicles entirely and converting it to a wide multi-use pathway and park area.

7.6 Transit Routes

Transit routing changes frequently, but our analysis suggests that the VSMP neighbourhood could be easily integrated into the current City transit system. The concept plan includes a series of bus stops located along the collector road loop. New stops along Hamilton Boulevard and the Alaska Highway would be required to keep all proposed transit stops located within the recommended 400-metre walking distance from residences.

As shown in Figure 14, Route #3 currently services the McIntyre, Hillcrest and Valleyview neighbourhoods. The proposed Alaska Highway transit stop could be incorporated into the southbound run to Hillcrest, whereas the proposed Hamilton Boulevard and internal VSMP neighbourhood transit stops could be incorporated into the northbound return leg from McIntyre.

FIGURE 14. CURRENT CITY TRANSIT ROUTING AROUND THE STUDY AREA

7.7 Short-Cutting Concerns

The connection to the Alaska Highway could potentially invite residents of other "above the airport" neighbourhoods to use it as a shortcut to the downtown area, avoiding the busy Alaska Highway & Hamilton Boulevard intersection. However, we do not anticipate this being an issue given that Alaska Highway & Hamilton Boulevard intersection still has sufficient residual capacity for E-W directions (provided that our intersection improvement suggestions are implemented appropriately). We predict that the majority of the traffic will still stay on Hamilton Boulevard instead of shortcutting through the subject development.

8.0 Conclusions & Recommendations

The conclusions and recommendations of the VSMP TIA are summarized as follows:

The majority of intersections in and around the development site are not expected to encounter operational issues.

- The external intersections including McIntyre Drive & Hamilton Boulevard, Hamilton Boulevard & CGC Access, Hamilton Boulevard & Sumanik Drive, Alaska Highway & Range Road, and Alaska Highway & Sumanik Drive, are anticipated to operate with acceptable conditions under all 2023 and 2040 scenarios.
- The studied internal intersections are expected to operate satisfactorily upon the completion of the VSMP development in 2040.
- The closure of the easternmost segment of Sumanik Drive will exert a negligible influence on the adjacent intersection, namely Alaska Highway & Range Road. Similarly, the closure is not expected to cause significant impacts on the internal intersections of the study area.

However, two significant external intersections to the north of the development, namely Alaska Highway & Hamilton Boulevard and Two Mile Hill Road & Range Road, are experiencing higher traffic volumes compared to the other intersections and are projected to experience operational issues by the time the VSMP development is finalized in 2040. The study has put forth recommendations for improvements (Table 10 and Table 13) to address these operational challenges, which involve updating intersection configurations and refining signal timing and phasing plans. Implementing these recommendations should rectify the operational problems at these two intersections, allowing them to operate under acceptable conditions in 2040.

In addition to the traffic analysis, the study has examined the following elements based on the provided VSMP land use and transportation concept plans:

- The signalized intersections of Hamilton Boulevard & CGC and Alaska Highway & Range Road will need to be upgraded from 3-way to 4-way configurations. The intersection of Hamilton Boulevard & McIntyre Drive is proposed to be upgraded to a roundabout allowing all turning movements.
- Internal Intersection 1, Internal Intersection 2, and Sumanik Drive & Valleyview Drive should be converted into stopcontrolled intersections. Internal Intersection 3, located near Hamilton Boulevard & Sumanik Drive, is planned to be configured as a traffic circle.
- The key internal roads should be designated as either minor collector or major collector road classifications.
- The recently adopted Whitehorse 2040 Official Community Plan includes several policies related to the transportation aspects of the VSMP, with a particular emphasis on promoting active and public transportation. In line with these policies, the concept plan has incorporated an extensive network of multi-use paths aligning with the primary desire lines within the VSMP area. Additionally, the plan has introduced several new transit stops, both within the site and along Alaska Highway and Hamilton Boulevard, ensuring a convenient access within a 400-meter walking distance from residential areas.
- Regarding the issue of existing "above the airport" neighbourhood traffic attempting to bypass the busy Alaska Highway & Hamilton Boulevard intersection, it is anticipated that most of the traffic will continue to use Hamilton Boulevard rather than attempting to "short cut" through the new development. This expectation is mainly based on the planned capacity improvements for Alaska Highway & Hamilton Boulevard, which are likely to encourage traffic to remain on the main routes, as well as a non-facilitative VSMP internal road network design.

Should you have any questions or comments concerning the contents of this report, please do not hesitate to contact the undersigned.

Sincerely, MORRISON HERSHFIELD LTD.

Stanley J. Li, M.Sc., P.Eng., PTOE Principal, Transportation Engineer Tel: 867 456 4747 Email: <u>sli@morrisonhershfield.com</u>

HCM Unsignalized Intersection Capacity Analysis 1: Hamilton Boulevard & McIntyre Dr

	۶	\mathbf{r}	1	Ť	ţ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	- Y		ሻ	†	A		
Traffic Volume (veh/h)	28	1	5	787	239	61	
Future Volume (Veh/h)	28	1	5	787	239	61	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	30	1	5	855	260	66	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)					391		
pX, platoon unblocked							
vC, conflicting volume	1158	163	326				
vC1, stage 1 conf vol							7
vC2, stage 2 conf vol							
vCu, unblocked vol	1158	163	326				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3	2.2				
p0 queue free %	84	100	100				
cM capacity (veh/h)	189	853	1230	`		· · · ·	
				0.0.4	0.0		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	31	5	855	173	153		
Volume Left	30	5	0	0	0		
Volume Right	1	0	0	0	66		
cSH	193	1230	1700	1700	1700		
Volume to Capacity	0.16	0.00	0.50	0.10	0.09		
Queue Length 95th (m)	4.2	0.1	0.0	0.0	0.0		
Control Delay (s)	27.1	7.9	0.0	0.0	0.0		
Lane LOS	D	A					
Approach Delay (s)	27.1	0.0		0.0			
Approach LOS	D						
Intersection Summary							
Average Delay			0.7				
Intersection Capacity Utilizatio	n		51.4%	IC	U Level o	f Service	
Analysis Period (min)			15				

Lanes, Volumes, Timings 6: Hamilton Boulevard & CGC Multiplex

	∕	\mathbf{r}	•	Ť	ţ	~	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	<u> </u>	1	5	1	1	1	
Traffic Volume (vph)	29	22	57	931	692	43	
Future Volume (vph)	29	22	57	931	692	43	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	
Grade (%)	0%	0.1	0.1	0%	0%	0.1	
Storage Length (m)	0.0	0.0	100.0	0,0	0 /0	80.0	
Storage Lanes	0.0	0.0	100.0			1	
Taper Length (m)	7.5		7.5			1	
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00	
Ped Bike Factor	1.00	1.00	1.00	0.35	0.55	1.00	
Frt		0.850				0.850	
Fit Protected	0.950	0.000	0.950			0.000	_
		1601		3570	3570	1601	
Satd. Flow (prot)	1789	1601	1789	3579	3579	1601	
Flt Permitted	0.950	4004	0.366	0570	0570	1004	
Satd. Flow (perm)	1789	1601	689	3579	3579	1601	
Right Turn on Red		Yes				Yes	
Satd. Flow (RTOR)		24				47	
Link Speed (k/h)	50			60	60		
Link Distance (m)	310.3			321.6	541.6		
Travel Time (s)	22.3			19.3	32.5		
Confl. Peds. (#/hr)							
Confl. Bikes (#/hr)							
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Growth Factor	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	
Bus Blockages (#/hr)	0	0	0	0	0	0	
Parking (#/hr)	, v		Ŭ		Ť	v	
Mid-Block Traffic (%)	0%			0%	0%		
Adj. Flow (vph)	32	24	62	1012	752	47	
Shared Lane Traffic (%)	JZ	24	UZ	1012	152	47	
	32	24	62	1012	752	47	
Lane Group Flow (vph)							
Turn Type	Prot	Perm	Perm	NA	NA	Perm	
Protected Phases	4			2	6	^	
Permitted Phases		4	2			6	
Detector Phase	4	4	2	2	6	6	
Switch Phase							
Minimum Initial (s)	7.0	7.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	46.8	46.8	36.2	36.2	36.2	36.2	
Total Split (s)	47.0	47.0	48.0	48.0	48.0	48.0	
Total Split (%)	49.5%	49.5%	50.5%	50.5%	50.5%	50.5%	
Yellow Time (s)	3.3	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.8	5.8	6.2	6.2	6.2	6.2	
Lead/Lag	0.0	0.0	0.2	0.2	0.2	0.2	
Lead-Lag Optimize?							
Recall Mode	None	None	Min	Min	Min	Min	
	12.1			41.8			
Act Effct Green (s)	12.1	12.1	41.8	41.0	41.8	41.8	

VSMP TIA 2023 Existing Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 6: Hamilton Boulevard & CGC Multiplex

	٦	\mathbf{i}	1	t	Ļ	~	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Actuated g/C Ratio	0.22	0.22	0.75	0.75	0.75	0.75	
v/c Ratio	0.08	0.07	0.12	0.38	0.28	0.04	
Control Delay	19.6	8.5	9.7	8.3	7.5	3.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	19.6	8.5	9.7	8.3	7.5	3.9	
LOS	В	А	А	А	А	А	
Approach Delay	14.8			8.4	7.3		
Approach LOS	В			А	А		
Queue Length 50th (m)	3.0	0.0	1.9	20.4	13.7	0.0	
Queue Length 95th (m)	8.7	4.5	15.5	94.2	65.1	5.9	
Internal Link Dist (m)	286.3			297.6	517.6		
Turn Bay Length (m)			100.0			80.0	
Base Capacity (vph)	1395	1254	543	2823	2823	1272	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.02	0.11	0.36	0.27	0.04	
Intersection Summary							
Area Type:	Other						
Cycle Length: 95							
Actuated Cycle Length: 55.5	5						
Natural Cycle: 85							
Control Type: Actuated-Unc	coordinated						
Maximum v/c Ratio: 0.38							
Intersection Signal Delay: 8	.1			In	tersectior	LOS: A	
Intersection Capacity Utiliza	tion 48.5%			IC	U Level o	of Service	e A
Analysis Period (min) 15							
Splits and Phases: 6: Har	milton Boule	evard & C	GC Multi	olex			
					∕	~ ~	

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	٦	+	*	4	ł	•	•	t	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	र्स	1		4		ሻ	A		ሻ	¥î≽	
Traffic Volume (vph)	2	0	0	4	1	20	5	728	51	6	257	14
Future Volume (vph)	2	0	0	4	1	20	5	728	51	6	257	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	0.1	0%	0.1	0.1	0%	0.1	0.1	0%	0.1	0.1	0%	0.1
Storage Length (m)	50.0	070	20.0	0.0	0,0	0.0	90.0	0,0	0.0	80.0	070	50.0
Storage Lanes	1		1	0.0		0.0	1		0.0	1		0.00
Taper Length (m)	7.5		•	7.5		U	7.5		U	7.5		U
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.30	0.35	1.00	0.35	0.35
Frt					0.890			0.990			0.992	
Fit Protected	0.950	0.950			0.890		0.950	0.990		0.950	0.992	
			1000	0		0		2542	0		2550	0
Satd. Flow (prot)	1700	1700	1883	0	1665	0		3543	0	1789	3550	0
Flt Permitted	4700	1700	4000	•	4070		0.572	0540	-	0.334	0550	0
Satd. Flow (perm)	1789	1789	1883	0	1676	0	1077	3543	0	629	3550	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					22			9			7	
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		630.9			507.6			391.2			321.6	
Travel Time (s)		45.4			36.5			23.5			19.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	2	0	0	4	1	22	5	791	55	7	279	15
Shared Lane Traffic (%)	50%											
Lane Group Flow (vph)	1	1	0	0	27	0	5	846	0	7	294	0
Turn Type	Perm	NA	Perm	Perm	NA	-	Perm	NA	-	Perm	NA	-
Protected Phases	. •	8			4			6			2	
Permitted Phases	8		8	4	•		6	Ū		2	_	
Detector Phase	8	8	8	4	4		6	6		2	2	
Switch Phase		, , , , , , , , , , , , , , , , , , ,	U	т	т		0	U		2	2	
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		10.0	10.0		10.0	10.0	
	47.8	47.8	47.8	47.8	47.8		35.7	35.7		35.7	35.7	
Minimum Split (s)		47.0		47.0								
Total Split (s)	48.0		48.0		48.0		37.0	37.0		37.0	37.0	
Total Split (%)	56.5%	56.5%	56.5%	56.5%	56.5%		43.5%	43.5%		43.5%	43.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.8		6.8		5.7	5.7		5.7	5.7	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		Min	Min		Min	Min	
Act Effct Green (s)	7.4	7.4			7.4		34.4	34.4		34.4	34.4	

VSMP TIA 2023 Existing Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	٦	→	\mathbf{r}	4	+	*	1	Ť	1	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.20	0.20			0.20		0.92	0.92		0.92	0.92	
v/c Ratio	0.00	0.00			0.08		0.01	0.26		0.01	0.09	
Control Delay	16.0	16.0			10.3		2.4	1.8		2.3	1.5	
Queue Delay	0.0	0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay	16.0	16.0			10.3		2.4	1.8		2.3	1.5	
LOS	В	В			В		А	А		А	А	
Approach Delay		16.0			10.3			1.8			1.6	
Approach LOS		В			В			А			А	
Queue Length 50th (m)	0.1	0.1			0.3		0.0	0.0		0.0	0.0	
Queue Length 95th (m)	1.1	1.1			5.6		1.0	26.1		1.3	8.7	
Internal Link Dist (m)		606.9			483.6			367.2			297.6	
Turn Bay Length (m)	50.0						90.0			80.0		
Base Capacity (vph)	1707	1707			1600		943	3103		550	3108	
Starvation Cap Reductn	0	0			0		0	0		0	0	
Spillback Cap Reductn	0	0			0		0	0		0	0	
Storage Cap Reductn	0	0			0		0	0		0	0	
Reduced v/c Ratio	0.00	0.00			0.02		0.01	0.27		0.01	0.09	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 37	.3											
Natural Cycle: 85												
Control Type: Semi Act-Un	icoord											
Maximum v/c Ratio: 0.26												
Intersection Signal Delay: 2	2.0				tersectior							
Intersection Capacity Utiliz	ation 38.0%			IC	CU Level o	of Service	А					
Analysis Period (min) 15												

Splits and Phases: 7: Hamilton Boulevard & Sumanik Drive

Lanes, Volumes, Timings 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

	۶	-	\mathbf{F}	4	+	•	•	1	1	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	A		5	† †	1	<u> </u>	††	1	5	^	7
Traffic Volume (vph)	108	815	18	210	619	274	15	118	162	491	118	85
Future Volume (vph)	108	815	18	210	619	274	15	118	162	491	118	85
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	120.0	• / •	0.0	0.0	• / •	110.0	125.0	• / •	110.0	260.0	• / •	110.0
Storage Lanes	1		0	1		1	1		1	1		1
Taper Length (m)	7.5		•	7.5		·	7.5		•	7.5		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Frt		0.997				0.850			0.850			0.850
Flt Protected	0.950	0.001		0.950		0.000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	1789	3568	0	1789	3579	1601	1789	3579	1601	1789	3579	1601
Flt Permitted	0.269	0000	0	0.112	0010	1001	0.671	0010	1001	0.596	0070	1001
Satd. Flow (perm)	507	3568	0	211	3579	1601	1264	3579	1601	1123	3579	1601
Right Turn on Red	507	0000	Yes	211	5515	Yes	1204	5515	Yes	1120	5515	Yes
Satd. Flow (RTOR)		2	163			298			176			92
Link Speed (k/h)		60			60	230		60	170		60	ĴΖ
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	
()		32.0			15.5			41.7			40.3	
Confl. Peds. (#/hr) Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Heavy Vehicles (%)	2%	2 %					270	2%	270	2%	2%	2%
Bus Blockages (#/hr)	U	U	0	0	0	0	0	U	U	0	0	U
Parking (#/hr)		00/			0%			00/			00/	
Mid-Block Traffic (%)	117	0%	20	000		200	10	0%	170	534	0%	00
Adj. Flow (vph)	117	886	20	228	673	298	16	128	176	534	128	92
Shared Lane Traffic (%)	117	006	0	000	670	20.0	10	100	170	524	100	00
Lane Group Flow (vph)	117	906	0	228	673	298	16	128	176	534	128	92
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	3	8		7	4		1	6	<u>^</u>	5	2	0
Permitted Phases	8			4	4	4	6	<u>^</u>	6	2	0	2
Detector Phase	3	8		7	4	4	1	6	6	5	2	2
Switch Phase	5.0	05.0		5.0	05.0	05.0	5.0	05.0	05.0	5.0	05.0	05.0
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	25.0	25.0	5.0	25.0	25.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2	57.2	9.0	57.2	57.2
Total Split (s)	15.0	55.0		15.0	55.0	55.0	22.0	58.0	58.0	22.0	58.0	58.0
Total Split (%)	10.0%	36.7%		10.0%	36.7%	36.7%	14.7%	38.7%	38.7%	14.7%	38.7%	38.7%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7	3.7	3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.7		2.5	6.7	6.7	4.0	7.2	7.2	4.0	7.2	7.2
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Min		None	Min	Min	None	Min	Min	None	Min	Min
Act Effct Green (s)	47.8	35.7		54.2	37.6	37.6	38.9	29.4	29.4	55.0	47.8	47.8

VSMP TIA 2023 Existing Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

	٦	+	*	4	ł	•	•	†	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.41	0.31		0.46	0.32	0.32	0.33	0.25	0.25	0.47	0.41	0.41
v/c Ratio	0.38	0.83		0.85	0.59	0.42	0.04	0.14	0.33	0.84	0.09	0.13
Control Delay	23.1	45.6		52.8	36.2	5.5	19.1	34.8	6.7	39.5	23.6	5.7
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.1	45.6		52.8	36.2	5.5	19.1	34.8	6.7	39.5	23.6	5.7
LOS	С	D		D	D	Α	В	С	А	D	С	А
Approach Delay		43.0			31.7			18.6			32.7	
Approach LOS		D			С			В			С	
Queue Length 50th (m)	13.8	94.1		30.2	63.0	0.0	1.9	11.7	0.0	88.1	8.5	0.0
Queue Length 95th (m)	33.4	153.2		#101.8	107.7	20.3	6.3	21.5	16.4	#147.5	19.1	11.0
Internal Link Dist (m)		517.6			201.0			671.8			780.3	
Turn Bay Length (m)	120.0					110.0	125.0		110.0	260.0		110.0
Base Capacity (vph)	338	1501		269	1505	845	633	1582	806	632	1630	779
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.35	0.60		0.85	0.45	0.35	0.03	0.08	0.22	0.84	0.08	0.12
Intersection Summary												
Area Type:	Other											

Cycle Length: 150 Actuated Cycle Length: 116.9

Actuated Cycle Length: 11 Natural Cycle: 130

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 34.2

Intersection Capacity Utilization 86.1%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

▲ Ø1	Ø2	∕×	∲ 04
22 s	58 s	15 s	55 s
Ø5	d de la constante de la const	√ Ø7	<u></u> ø8
22 s	58 s	15 s	55 s

	4	•	1	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		† †	1	۲	1	
Traffic Volume (vph)	29	2	237	118	42	330	
Future Volume (vph)	29	2	237	118	42	330	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	
Grade (%)	0%	0.1	0%	0.1	0.7	0%	
Storage Length (m)	0.0	0.0	0 /0	175.0	130.0	070	
Storage Lanes	0.0	0.0		175.0	130.0		
Taper Length (m)	7.5	U		1	7.5		
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95	
Ped Bike Factor	1.00	1.00	0.95	1.00	1.00	0.95	
	0.000			0.050			
Frt Elt Drotostad	0.992			0.850	0.050		
Fit Protected	0.955	•	0570	4004	0.950	0570	
Satd. Flow (prot)	1784	0	3579	1601	1789	3579	
Flt Permitted	0.955	•	0.570	4004	0.950	0.576	
Satd. Flow (perm)	1784	0	3579	1601	1789	3579	
Right Turn on Red	-	Yes		Yes			· ·
Satd. Flow (RTOR)	2			128			
Link Speed (k/h)	50		70			70	
Link Distance (m)	1141.1		889.8			404.2	
Travel Time (s)	82.2		45.8			20.8	
Confl. Peds. (#/hr)							
Confl. Bikes (#/hr)							
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Growth Factor	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	
Bus Blockages (#/hr)	0	0	0	0	0	0	
Parking (#/hr)							
Mid-Block Traffic (%)	0%		0%			0%	
Adj. Flow (vph)	32	2	258	128	46	359	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	34	0	258	128	46	359	
Turn Type	Prot		NA	Perm	Prot	NA	
Protected Phases	4		6		5	2	
Permitted Phases				6	•	_	
Detector Phase	4		6	6	5	2	
Switch Phase			- V	J	- V	-	
Minimum Initial (s)	7.0		20.0	20.0	5.0	20.0	
Minimum Split (s)	44.3		20.0	20.0	9.0	20.0	
Total Split (s)	44.3		35.0	35.0	10.0	45.0	
Total Split (%)	45.0 50.0%		38.9%	38.9%	11.1%	45.0 50.0%	
Yellow Time (s)	3.3		30.9% 3.7	30.9% 3.7	3.0	50.0% 3.7	
	3.3		3.7 2.0	3.7 2.0	3.0 1.0	3.7 2.0	
All-Red Time (s)					0.0		
Lost Time Adjust (s)	0.0		0.0	0.0		0.0	
Total Lost Time (s)	6.3		5.7	5.7	4.0	5.7	
Lead/Lag			Lag	Lag	Lead		
Lead-Lag Optimize?			Yes	Yes	Yes		
Recall Mode	None		Min	Min	None	Min	
Act Effct Green (s)	7.2		32.7	32.7	6.0	37.9	

VSMP TIA 2023 Existing Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 9: Alaska Highway & Range Road

	4	•	Ť	۲	5	Ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Actuated g/C Ratio	0.18		0.80	0.80	0.15	0.92	
v/c Ratio	0.11		0.09	0.10	0.18	0.11	
Control Delay	15.9		4.3	2.2	18.5	1.5	
Queue Delay	0.0		0.0	0.0	0.0	0.0	
Total Delay	15.9		4.3	2.2	18.5	1.5	
LOS	В		А	А	В	А	
Approach Delay	15.9		3.6			3.4	
Approach LOS	В		А			А	
Queue Length 50th (m)	1.6		0.0	0.0	2.4	0.0	
Queue Length 95th (m)	8.6		12.8	6.9	11.3	10.0	
Internal Link Dist (m)	1117.1		865.8			380.2	
Turn Bay Length (m)				175.0	130.0		
Base Capacity (vph)	1660		3141	1421	266	3359	
Starvation Cap Reductn	0		0	0	0	0	
Spillback Cap Reductn	0		0	0	0	0	
Storage Cap Reductn	0		0	0	0	0	
Reduced v/c Ratio	0.02		0.08	0.09	0.17	0.11	
Intersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 41							
Natural Cycle: 85							
Control Type: Actuated-Un	coordinated						
Maximum v/c Ratio: 0.18							
Intersection Signal Delay: 4	1.0			In	tersectior	LOS: A	
Intersection Capacity Utiliza	ation 40.0%			IC	CU Level o	of Service	e A
Analysis Period (min) 15							
Splits and Phases: 9: Ala	aska Highwa	y & Range	e Road				

Lanes, Volumes, Timings 10: Range Road & Two Mile Hill Road

	٨	+	*	4	Ļ	•	•	1	1	ŕ	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	<u></u> ∱1≱		<u> </u>	ተተቡ			र्स	1		र्स	1
Traffic Volume (vph)	165	1266	15	62	490	139	5	64	213	271	52	129
Future Volume (vph)	165	1266	15	62	490	139	5	64	213	271	52	129
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	140.0	0,0	0.0	75.0	0,0	175.0	0.0	0,0	30.0	0.0	0,0	50.0
Storage Lanes	1		0.0	1		1	0		1	0		1
Taper Length (m)	7.5		Ū	7.5			7.5		•	7.5		•
Lane Util. Factor	1.00	0.95	0.95	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.55	0.55	1.00	0.01	0.51	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.998			0.967				0.850			0.850
Flt Protected	0.950	0.330		0.950	0.301			0.997	0.000		0.960	0.000
Satd. Flow (prot)	1789	3571	0	1789	4972	0	0	1878	1601	0	1808	1601
Flt Permitted	0.324	5571	0	0.133	4372	0	U	0.970	1001	0	0.709	1001
Satd. Flow (perm)	610	3571	0	250	4972	0	0	1827	1601	0	1335	1601
, , , , , , , , , , , , , , , , , , ,	010	3071	Yes	200	4972	Yes	U	1021	Yes	U	1000	Yes
Right Turn on Red		2	res		85	res						
Satd. Flow (RTOR)								50	99		50	140
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		225.0			1098.9			1141.1			1649.4	
Travel Time (s)		13.5			65.9			82.2			118.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	179	1376	16	67	533	151	5	70	232	295	57	140
Shared Lane Traffic (%)												
Lane Group Flow (vph)	179	1392	0	67	684	0	0	75	232	0	352	140
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8		8	4		4
Detector Phase	5	2		6	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	9.0	31.2		31.2	31.2		14.8	14.8	14.8	43.8	43.8	43.8
Total Split (s)	9.0	46.0		37.0	37.0		44.0	44.0	44.0	44.0	44.0	44.0
Total Split (%)	10.0%	51.1%		41.1%	41.1%		48.9%	48.9%	48.9%	48.9%	48.9%	48.9%
Yellow Time (s)	3.0	3.7		3.7	3.7		3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	1.0	3.5		3.5	3.5		4.5	4.5	4.5	4.5	4.5	4.5
Lost Time Adjust (s)	0.0	-1.0		0.0	0.0			0.0	0.0		-1.3	0.0
Total Lost Time (s)	4.0	6.2		7.2	7.2			7.8	7.8		6.5	7.8
Lead/Lag	Lead	0.2		Lag	Lag			1.0	1.0		0.0	7.0
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	None	Max		Max	Max		Min	Min	Min	Min	Min	Min
Act Effct Green (s)	42.3	40.1		30.0	30.0		IVIIII	26.8	26.8	(VIII)	28.1	26.8
	42.3	4 0.1		50.0	50.0			20.0	20.0		20.1	20.0

VSMP TIA 2023 Existing Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 10: Range Road & Two Mile Hill Road

	٦	→	\mathbf{F}	4	Ļ	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.52	0.50		0.37	0.37			0.33	0.33		0.35	0.33
v/c Ratio	0.46	0.79		0.73	0.36			0.12	0.39		0.76	0.23
Control Delay	16.7	22.6		71.2	17.8			18.4	13.0		34.7	4.2
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	16.7	22.6		71.2	17.8			18.4	13.0		34.7	4.2
LOS	В	С		E	В			В	В		С	Α
Approach Delay		21.9			22.5			14.3			26.0	
Approach LOS		С			С			В			С	
Queue Length 50th (m)	14.0	90.1		8.8	24.1			7.9	14.7		46.9	0.0
Queue Length 95th (m)	30.2	#146.6		#34.7	38.8			16.4	31.0		76.5	10.4
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0					30.0			50.0
Base Capacity (vph)	392	1770		92	1897			823	775		623	798
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spillback Cap Reductn	0	0		0	0			0	0		0	0
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced v/c Ratio	0.46	0.79		0.73	0.36			0.09	0.30		0.57	0.18
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 81												
Natural Cycle: 85												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 0.79							Ť					
Intersection Signal Delay:					ntersection							
Intersection Capacity Utiliz	zation 84.8%)		10	CU Level o	of Service	E					
Analysis Period (min) 15												
# 95th percentile volume			eue may	be longe	r. 🤺							
Queue shown is maxim	num after two	o cycles.										
Splits and Phases: 10: I	Range Road	& Two Mi	le Hill Ro	ad								

		4	04
46 s		44 s	
∕ ø₅	★ Ø6	-	Ø8
9 s 🛛	37 s	44 s	

HCM Unsignalized Intersection Capacity Analysis 11: Alaska Highway & Sumanik Dr

ane Configurations Image: configuratio		≯	\mathbf{F}	•	1	ţ	∢	
raffic Volume (veh/h) 0 51 0 295 321 25 jgn Control Stop Free Free rade 0% 0% 0% eak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 ourly flow rate (vph) 0 55 0 321 349 27 edestrians ane Width (m) /alking Speed (m/s) ercent Blockage ight turn flare (veh) ledian type None None ledian storage veh) pstream signal (m) X, platoon unblocked C, conflicting volume 523 188 376 C1, stage 1 conf vol C2, stage 1 conf vol C2, stage 2 conf vol C2, stage 1 conf vol C2, stage 1 conf vol C2, stage 2 (s) f (s) 3.5 3.3 2.2 0 queue free % 100 93 100 M capacity (veh/h) 484 822 1179 irrection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 0 olume Right 55 0 0 0 0 27 SH 822 1700 1700 1700 1700 olume Right % 9.7 0.0 0.0 olume Logy (s) 9.7 0.0 0.0 pproach LOS A pproach Delay (s) 9.7 0.0 pproach LOS A pproach Delay (s) 9.7 0.0 pproach LOS A proach Delay (s) 9.7 0.0 pproach LOS A proach Delay (s) 9.7 0.0 0.7 ICU Level of Service	Movement	EBL	EBR	NBL	NBT	SBT	SBR	
raffic Volume (veh/h) 0 51 0 295 321 25 jgn Control Stop Free Free rade 0% 0% 0% eak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 ourly flow rate (vph) 0 55 0 321 349 27 edestrians ane Width (m) /alking Speed (m/s) ercent Blockage ight turn flare (veh) ledian type None None ledian storage veh) pstream signal (m) X, platoon unblocked C, conflicting volume 523 188 376 C1, stage 1 conf vol C2, stage 1 conf vol C2, stage 2 conf vol C2, stage 1 conf vol C2, stage 1 conf vol C2, stage 1 conf vol C2, stage 2 conf vol C2, stage 3 conf vol C3, stage 1 conf vol C3, stage 2 conf vol C3, stage 1 conf vol C3, stage 2 conf vol C3, stage 2 conf vol C3, stage 1 conf vol C3, stage 2 conf vol C4, stage 1 conf vol C5, stage 1 conf vol C4, stage 1 conf vol C5, stage 2 conf vol C4, stage 1 conf vol C5, stage 2 conf vol C5, stage 2 conf vol C4, stage 1 conf vol C5, stage 2 conf vol C5, stage 2 conf vol C4, stage 1 conf vol C5, stage 2 conf vol C5, stage 2 conf vol C4, stage 1 conf vol C5, stage 2 con	Lane Configurations		1		^	≜ 1₽		
uture Volume (Veh/h) 0 51 0 295 321 25 ign Control Stop Free Free Free Free rade 0% 0% 0% 0% 0% eak Hour Factor 0.92 0.92 0.92 0.92 0.92 ourly flow rate (vph) 0 55 0 321 349 27 edestrians ane Width (m) ////////////////////////////////////	Traffic Volume (veh/h)	0	51	0			25	
ign Control Stop Free Free Free rade 0% 0% 0% 0% eak Hour Factor 0.92 0.92 0.92 0.92 0.92 ourly flow rate (vph) 0 55 0 321 349 27 edestrians ane Width (m) Jaking Speed (m/s) ane Width (m) Jaking Speed (m/s) ane Width (m) Jaking Speed (m/s) ercent Blockage igint um flare (veh) because ane None ledian type None None None None ledian type None None None None (conflicting volume 523 188 376 C, conflicting volume 523 188 376 C1, stage 1 conf vol 22 stage 2 conf vol C2, stage (s) 6.8 6.9 4.1 (i) unblocked vol 523 188 376 <td>· · · · ·</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td>	· · · · ·			0				
rade 0% 0% 0% 0% eak Hour Factor 0.92 etestinas areadity for thetesting thetestin								
Beak Hour Factor 0.92	Grade							
ourly flow rate (vph) 0 55 0 321 349 27 edestrians ane Width (m) ////////////////////////////////////			0.92	0.92			0.92	
edestrians ane Width (m) /alking Speed (m/s) ercent Blockage ight turn flare (veh) ledian storage veh) pstream signal (m) X, platoon unblocked C, conflicting volume 523 C, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol C2, stage 2 conf vol Cu, unblocked vol C2, stage 2 conf vol Cu, unblocked vol S23 188 S76 C, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol S23 188 S76 C, stage (s) * * (s) 3.5 3.5 3.3 2.2 0 queue free % 100 93 100 93 101 93 102 233 144 822 101 93 102 0 0 0 0 0								
ane Width (m) /alking Speed (m/s) ercent Blockage ight turn flare (veh) ledian type None None ledian storage veh) pstream signal (m) X, platoon unblocked C, conflicting volume 523 188 376 C1, stage 1 conf vol C2, stage 2 conf vol C2, stage 2 conf vol C2, stage (s) 6.8 6.9 4.1 C, single (s) 6.8 6.9 4.1 C, 2 stage (s) r (s) 3.5 3.3 2.2 0 queue free % 100 93 100 M capacity (veh/h) 484 822 1179 irrection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 olume Right 55 0 0 0 0 27 SH 822 1700 1700 1700 1700 olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 procach Delay (s) 9.7 0.0 A tersection Summary verage Delay 0.7 tersection Capacity Utilization 19.7% ICU Level of Service	Pedestrians							
/alking Speed (m/s) ercent Blockage ight turn flare (veh) ledian storage veh) pstream signal (m) X, platoon unblocked C, conflicting volume 523 C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 523 C2, stage 2 conf vol C2, stage 2 conf vol C2, stage (s) * (s) 3.5 * (s) 3.5 C, single (s) * (s) 3.5 * (s) 0 * (s) 0.7 irrecton, Lane # EB 1 * (s) 0.7 olume total 55 0 0								
ercent Blockage ight turn flare (veh) ledian type None None ledian storage veh) pstream signal (m) X, platoon unblocked C, conflicting volume 523 188 376 C1, stage 1 conf vol 523 188 376 C2, stage 2 conf vol 0 0 0 C2, stage 2 conf vol 523 188 376 C3, single (s) 6.8 6.9 4.1 C, 2 stage (s) 5 5 3.3 2.2 C) queue free % 100 93 100 M capacity (veh/h) 484 822 1179 irrection, Lane # EB1 NB1 NB2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 27 SH 822 1700 1700 1700 1700 olume to Capacity 0.07 0.09 0.14 0.08 0.0 olume to Capacity 9.7 0.0 0.0 0.0 0.0 </td <td>· · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · · ·							
ight turn flare (veh) Identify the instruction of the instruct								
ledian type None None ledian storage veh) pstream signal (m) X. X. platoon unblocked 523 188 376 C1, stage 1 conf vol 523 188 376 C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C2, stage (s)								
Ideian storage veh) pstream signal (m) X, platoon unblocked C, conflicting volume 523 188 376 C1, stage 1 conf vol C2, stage 2 conf vol 523 188 376 Cu, unblocked vol 523 188 376 C, single (s) 6.8 6.9 4.1 C, single (s) 6.8 6.9 4.1 C, 2 stage (s) 5 5 3.3 2.2 C queue free % 100 93 100 M capacity (veh/h) 484 822 1179 irrection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 Olume to Capacity 0.07 0.09 0.14 0.08 tueue Length 95th (m) 1.6 0.0 0.0 0.0 olume to Capacity (s) 9.7 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0					None	None		
pstream signal (m) X, platoon unblocked C, conflicting volume 523 188 376 C1, stage 1 conf vol 22, stage 2 conf vol 22, stage 2 conf vol 22, stage 2 conf vol Cu, unblocked vol 523 188 376 22, stage 2 conf vol Cu, unblocked vol 523 188 376 22, stage 2 conf vol Cu, unblocked vol 523 188 376 22, stage 2 conf vol Cu, unblocked vol 523 188 376 22, stage 2 conf vol Cu, unblocked vol 523 188 376 22, stage 2 conf vol Cu, unblocked vol 523 188 376 22, stage 2, sta								
X, platoon unblocked C, conflicting volume 523 188 376 C1, stage 1 conf vol C2, stage 2 conf vol C2, stage 2 conf vol C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C2, stage 2 conf vol C, single (s) 6.8 6.9 4.1 C2, stage 2 conf vol C, stage 2 conf vol S23 188 376 C, stage (s) 7 53 3.3 2.2 Queue free % 100 93 100 M M capacity (veh/h) 484 822 1179 F olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 0 SH 822 1700 1700 1700 1700 1700 olume to Capacity 0.7								
C, conflicting volume 523 188 376 C1, stage 1 conf vol C2, stage 2 conf vol C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C, single (s) 6.8 6.9 4.1 C, 2 stage (s) 53 3.3 2.2 C queue free % 100 93 100 M capacity (veh/h) 484 822 1179 irrection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 27 SH 822 1700 1700 1700 1700 olume to Capacity 0.07 0.09 0.14 0.08 0.0 outree Length 95th (m) 1.6 0.0 0.0 0.0 0.0 outree Length 95th (m) 1.6 0.0 0.0 0.0 0.0 outree Length 95th (m) 1.6 0.0 0.0 0.0 0.0 outree Length 95th (m) 1.6 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C, single (s) 6.8 6.9 4.1 C, 2 stage (s)		523	188	376				
C2, stage 2 conf vol Cu, unblocked vol 523 188 376 C, single (s) 6.8 6.9 4.1 C, 2 stage (s)		525	100	010				
Cu, unblocked vol 523 188 376 C, single (s) 6.8 6.9 4.1 C, 2 stage (s) - - - c (s) 3.5 3.3 2.2 - 0 queue free % 100 93 100 - M capacity (veh/h) 484 822 1179 irrection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 olume to Capacity 0.07 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 pproach LOS A - - - werage Delay 0.7 1CU Level of Service -								
C, single (s) 6.8 6.9 4.1 C, 2 stage (s)		523	188	376				
2, 2 stage (s) 3.5 3.3 2.2 0 queue free % 100 93 100 M capacity (veh/h) 484 822 1179 irection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Total 55 160 160 233 143 olume Right 55 0 0 0 0 SH 822 1700 1700 1700 1700 olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A								
F (s) 3.5 3.3 2.2 O queue free % 100 93 100 M capacity (veh/h) 484 822 1179 irrection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 olume Right 55 0 0 0 27 SH 822 1700 1700 1700 1700 olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A pproach LOS A 0.7 ttersection Summary 0.7 19.7% ICU Level of Service		0.0	0.5	4.1				
O queue free % 100 93 100 M capacity (veh/h) 484 822 1179 irrection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 olume Right 55 0 0 0 27 SH 822 1700 1700 1700 1700 olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A pproach Delay (s) 9.7 0.0 0.0 0.0		35	33	2.2				
M capacity (veh/h) 484 822 1179 irrection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 olume Right 55 0 0 0 27 SH 822 1700 1700 1700 1700 olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A								
irection, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 olume Right 55 0 0 0 27 SH 822 1700 1700 1700 00 olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A								
olume Total 55 160 160 233 143 olume Left 0 0 0 0 0 0 olume Right 55 0 0 0 27 SH 822 1700 1700 1700 olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A								
olume Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 SH 822 1700					_			
olume Right 55 0 0 0 27 SH 822 1700 1700 1700 1700 olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A								
SH 822 1700 1700 1700 1700 olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A pproach Delay (s) 9.7 0.0 0.0 pproach LOS A 0.0 0.0 0.0 werage Delay 0.7 0.7 ICU Level of Service								
olume to Capacity 0.07 0.09 0.09 0.14 0.08 ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A	/olume Right							
ueue Length 95th (m) 1.6 0.0 0.0 0.0 0.0 ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A	SH							
ontrol Delay (s) 9.7 0.0 0.0 0.0 0.0 ane LOS A 9.7 0.0 0.0 0.0 pproach Delay (s) 9.7 0.0 0.0 pproach LOS A 0.0 tersection Summary 0.7 tersection Capacity Utilization 0.7 ICU Level of Service	Volume to Capacity							
ane LOS A pproach Delay (s) 9.7 0.0 0.0 A tersection Summary verage Delay 0.7 tersection Capacity Utilization 19.7% ICU Level of Service	Queue Length 95th (m)			· · · · · ·				
ane LOS A pproach Delay (s) 9.7 0.0 0.0 A tersection Summary verage Delay 0.7 tersection Capacity Utilization 19.7% ICU Level of Service	Control Delay (s)		0.0	0.0	0.0	0.0		
pproach LOS A tersection Summary verage Delay 0.7 tersection Capacity Utilization 19.7% ICU Level of Service	Lane LOS							
Intersection Summary 0.7 verage Delay 0.7 Intersection Capacity Utilization 19.7%	Approach Delay (s)		0.0		0.0			
verage Delay 0.7 Itersection Capacity Utilization 19.7% ICU Level of Service	Approach LOS	A						
tersection Capacity Utilization 19.7% ICU Level of Service	ntersection Summary							
tersection Capacity Utilization 19.7% ICU Level of Service	,			0.7				
		n			IC	U Level o	f Service	
	nalysis Period (min)			15	.0			,

HCM Unsignalized Intersection Capacity Analysis 1: Hamilton Boulevard & McIntyre Dr

	≯	\mathbf{i}	•	t	Ţ	1	
Movement	EBL	EBR	, NBL	NBT	• SBT	SBR	
Lane Configurations	¥		٦	•	≜ †⊅		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	68	4	3	434	806	60	
Future Volume (vph)	68	4	3	434	806	60	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	74	4	3	472	876	65	
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total (vph)	78	3	472	584	357		
Volume Left (vph)	74	3	0	0	0		
Volume Right (vph)	4	0	0	0	65		
Hadj (s)	0.19	0.53	0.03	0.03	-0.09		
Departure Headway (s)	6.8	6.4	5.9	5.3	5.2		
Degree Utilization, x	0.15	0.01	0.77	0.86	0.51		
Capacity (veh/h)	499	543	599	669	685		
Control Delay (s)	11.0	8.2	24.4	30.8	12.3		
Approach Delay (s)	11.0	24.3		23.7			
Approach LOS	В	С		С			
Intersection Summary							
Delay			23.2				
Level of Service			С				
Intersection Capacity Utiliza	ition		34.9%	IC	U Level c	of Service A	

15

Analysis Period (min)

Lanes, Volumes, Timings 6: Hamilton Boulevard & CGC Multiplex

	٨	\mathbf{r}	•	Ť	ţ	~	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	<u> </u>	1	<u>م</u>	1	1	7	
Traffic Volume (vph)	33	64	29	479	936	58	
Future Volume (vph)	33	64	29	479	936	58	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	
Grade (%)	0%	0.1	0.1	0%	0%	0.1	
Storage Length (m)	0.0	0.0	100.0	0,0	0,0	80.0	
Storage Lanes	1	1	100.0			1	
Taper Length (m)	7.5		7.5				
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00	
Ped Bike Factor				0.00	0.00	1.00	
Frt		0.850				0.850	
Flt Protected	0.950	0.000	0.950			0.000	
Satd. Flow (prot)	1789	1601	1789	3579	3579	1601	
Flt Permitted	0.950	1001	0.257	0010	0010	1001	
Satd. Flow (perm)	1789	1601	484	3579	3579	1601	
Right Turn on Red	1109	Yes	-04	3313	0019	Yes	
Satd. Flow (RTOR)		49				63	
Link Speed (k/h)	50	49		60	60	03	
	310.3			321.6	541.6		
Link Distance (m)	22.3			321.6 19.3			
Travel Time (s)	22.3			19.3	32.5		
Confl. Peds. (#/hr)							
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Growth Factor	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	
Bus Blockages (#/hr)	0	0	0	0	0	0	
Parking (#/hr)	00/						
Mid-Block Traffic (%)	0%			0%	0%		
Adj. Flow (vph)	36	70	32	521	1017	63	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	36	70	32	521	1017	63	
Turn Type	Prot	Perm	Perm	NA	NA	Perm	
Protected Phases	4			2	6		
Permitted Phases		4	2			6	
Detector Phase	4	4	2	2	6	6	
Switch Phase							
Minimum Initial (s)	7.0	7.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	46.8	46.8	36.2	36.2	36.2	36.2	
Total Split (s)	47.0	47.0	48.0	48.0	48.0	48.0	
Total Split (%)	49.5%	49.5%	50.5%	50.5%	50.5%	50.5%	
Yellow Time (s)	3.3	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.8	5.8	6.2	6.2	6.2	6.2	
Lead/Lag	0.0	0.0	0.2	0.2	0.2	0.2	
Lead-Lag Optimize?							
Recall Mode	None	None	Min	Min	Min	Min	
Act Effct Green (s)	11.8	11.8	35.6	35.6	35.6	35.6	
	11.0	11.0	0.03	33.0	0.00	33.0	

VSMP TIA 2023 Existing Conditions PM Peak Hour

Lanes, Volumes, Timings 6: Hamilton Boulevard & CGC Multiplex

	۶	\mathbf{r}	1	1	Ļ	∢_	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Actuated g/C Ratio	0.22	0.22	0.65	0.65	0.65	0.65	
v/c Ratio	0.09	0.18	0.10	0.22	0.44	0.06	
Control Delay	17.1	8.9	10.9	8.2	9.8	3.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.1	8.9	10.9	8.2	9.8	3.7	
LOS	В	А	В	Α	Α	А	
Approach Delay	11.7			8.3	9.4		
Approach LOS	В			А	А		
Queue Length 50th (m)	2.7	1.6	0.9	8.8	20.6	0.0	
Queue Length 95th (m)	9.2	9.7	9.5	43.5	95.0	6.8	
Internal Link Dist (m)	286.3			297.6	517.6		
Turn Bay Length (m)			100.0			80.0	
Base Capacity (vph)	1428	1288	390	2889	2889	1304	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.05	0.08	0.18	0.35	0.05	
Intersection Summary							
Area Type: C	Other						
Cycle Length: 95							
Actuated Cycle Length: 54.7							
Natural Cycle: 85							
Control Type: Actuated-Unco	ordinated						
Maximum v/c Ratio: 0.44							-
Intersection Signal Delay: 9.2					tersection		
Intersection Capacity Utilizati	on 41.7%			IC	CU Level c	of Service	A
Analysis Period (min) 15							
	11. D. I		00.11				
Splits and Phases: 6: Ham	ilton Boule	evard & C	GC Multi	plex			

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	٨	+	*	4	ł	•	•	1	1	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>م</u>	र्स	1		\$		1	A1⊅		1	A∿	
Traffic Volume (vph)	16	3	8	2	0	12	9	406	18	19	687	27
Future Volume (vph)	16	3	8	2	0	12	9	406	18	19	687	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	50.0		20.0	0.0		0.0	90.0		0.0	80.0		50.0
Storage Lanes	1		1	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor												
Frt			0.850		0.883			0.993			0.994	
Flt Protected	0.950	0.966			0.993		0.950			0.950		
Satd. Flow (prot)	1700	1728	1601	0	1651	0	1789	3553	0	1789	3557	0
Flt Permitted					0.950		0.358			0.487		
Satd. Flow (perm)	1789	1789	1601	0	1580	0	674	3553	0	917	3557	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			35		35			6			5	
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		630.9			507.6			391.2			321.6	
Travel Time (s)		45.4			36.5			23.5			19.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	17	3	9	2	0	13	10	441	20	21	747	29
Shared Lane Traffic (%)	42%											
Lane Group Flow (vph)	10	10	9	0	15	0	10	461	0	21	776	0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8		8	4			6			2		
Detector Phase	8	8	8	4	4		6	6		2	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	47.8	47.8	47.8	47.8	47.8		35.7	35.7		35.7	35.7	
Total Split (s)	48.0	48.0	48.0	48.0	48.0		37.0	37.0		37.0	37.0	
Total Split (%)	56.5%	56.5%	56.5%	56.5%	56.5%		43.5%	43.5%		43.5%	43.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.8		6.8		5.7	5.7		5.7	5.7	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		Min	Min		Min	Min	
Act Effct Green (s)	7.4	7.4	7.4		7.4		30.5	30.5		30.5	30.5	

VSMP TIA 2023 Existing Conditions PM Peak Hour

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	٦	-	\mathbf{r}	1	-	•	1	†	1	5	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.20	0.20	0.20		0.20		0.82	0.82		0.82	0.82	
v/c Ratio	0.03	0.03	0.03		0.04		0.02	0.16		0.03	0.27	
Control Delay	15.1	15.1	1.9		3.7		4.3	3.1		4.2	3.5	
Queue Delay	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay	15.1	15.1	1.9		3.7		4.3	3.1		4.2	3.5	
LOS	В	В	А		А		А	А		А	А	
Approach Delay		11.0			3.7			3.2			3.5	
Approach LOS		В			А			Α			А	
Queue Length 50th (m)	0.4	0.4	0.0		0.0		0.0	0.0		0.0	0.0	
Queue Length 95th (m)	3.4	3.4	0.9		2.0		1.7	13.8		2.7	24.2	
Internal Link Dist (m)		606.9			483.6			367.2			297.6	
Turn Bay Length (m)	50.0		20.0				90.0			80.0		
Base Capacity (vph)	1726	1726	1546		1525		585	3087		796	3090	
Starvation Cap Reductn	0	0	0		0		0	0		0	0	
Spillback Cap Reductn	0	0	0		0		0	0		0	0	
Storage Cap Reductn	0	0	0		0		0	0		0	0	
Reduced v/c Ratio	0.01	0.01	0.01		0.01		0.02	0.15		0.03	0.25	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 37.	.1											
Natural Cycle: 85												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 0.27							~					
Intersection Signal Delay: 3					itersection							
Intersection Capacity Utilization	ation 47.6%			IC	CU Level o	of Service	А					
Analysis Period (min) 15												

Splits and Phases: 7: Hamilton Boulevard & Sumanik Drive

Lanes, Volumes, Timings 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

	٦	-	\mathbf{F}	4	ł	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	≜ †⊅		5	^	1	٦	††	1	5	^	1
Traffic Volume (vph)	102	394	6	212	838	596	9	150	141	317	111	125
Future Volume (vph)	102	394	6	212	838	596	9	150	141	317	111	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	120.0	• / •	0.0	0.0	• / •	110.0	125.0	• / •	110.0	260.0	• / •	110.0
Storage Lanes	1		0	1		1	1		1	1		1
Taper Length (m)	7.5		Ŭ	7.5		•	7.5		•	7.5		•
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Frt		0.998				0.850			0.850			0.850
Flt Protected	0.950	0.000		0.950		0.000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	1789	3571	0	1789	3579	1601	1789	3579	1601	1789	3579	1601
Flt Permitted	0.156	5571	U	0.441	5515	1001	0.675	5515	1001	0.578	5515	1001
Satd. Flow (perm)	294	3571	0	831	3579	1601	1271	3579	1601	1089	3579	1601
Right Turn on Red	234	5571	Yes	001	5519	Yes	1271	5519	Yes	1009	5519	Yes
Satd. Flow (RTOR)		1	165			648			153			136
Link Speed (k/h)		60			60	040		60	100		60	130
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	111	428	7	230	911	648	10	163	153	345	121	136
Shared Lane Traffic (%)												
Lane Group Flow (vph)	111	435	0	230	911	648	10	163	153	345	121	136
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		4	6		6	2		2
Detector Phase	3	8		7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	25.0	25.0	5.0	25.0	25.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2	57.2	9.0	57.2	57.2
Total Split (s)	12.0	55.0		12.0	55.0	55.0	25.0	58.0	58.0	25.0	58.0	58.0
Total Split (%)	8.0%	36.7%		8.0%	36.7%	36.7%	16.7%	38.7%	38.7%	16.7%	38.7%	38.7%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7	3.7	3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.7		2.5	6.7	6.7	4.0	7.2	7.2	4.0	7.2	7.2
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Min		None	Min	Min	None	Min	Min	None	Min	Min
Act Effct Green (s)	57.2	46.6		60.6	46.8	46.8	38.6	29.5	29.5	57.3	52.3	52.3
	51.L	.0.0		00.0	.0.0	.0.0	00.0	20.0	20.0	01.0	52.0	

VSMP TIA 2023 Existing Conditions PM Peak Hour

Lanes, Volumes, Timings 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

	٨	+	*	4	Ļ	•	•	t	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.45	0.37		0.48	0.37	0.37	0.30	0.23	0.23	0.45	0.41	0.41
v/c Ratio	0.50	0.33		0.49	0.69	0.65	0.02	0.20	0.31	0.57	0.08	0.18
Control Delay	28.1	30.7		24.9	38.2	5.9	20.2	39.6	7.2	27.7	23.6	4.4
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.1	30.7		24.9	38.2	5.9	20.2	39.6	7.2	27.7	23.6	4.4
LOS	С	С		С	D	А	С	D	А	С	С	А
Approach Delay		30.2			24.8			23.8			21.6	
Approach LOS		С			С			С			С	
Queue Length 50th (m)	13.8	38.4		29.9	95.0	0.0	1.4	17.6	0.0	58.7	9.4	0.0
Queue Length 95th (m)	33.1	67.4		64.3	154.6	30.9	4.5	26.5	15.5	81.6	17.5	12.4
Internal Link Dist (m)		517.6			201.0			671.8			780.3	
Turn Bay Length (m)	120.0					110.0	125.0		110.0	260.0		110.0
Base Capacity (vph)	227	1372		469	1374	1014	626	1445	738	609	1510	754
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.49	0.32		0.49	0.66	0.64	0.02	0.11	0.21	0.57	0.08	0.18
Intersection Summary												

 Intersection Summary

 Area Type:
 Other

 Cycle Length: 150

 Actuated Cycle Length: 126.8

 Natural Cycle: 130

 Control Type: Actuated-Uncoordinated

 Maximum v/c Ratio: 0.69

 Intersection Signal Delay: 25.0

 Intersection Capacity Utilization 89.2%

 Analysis Period (min) 15

Splits and Phases: 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

▲ Ø1	Ø2		∕× _{Ø3}	◆ ▼ Ø4
25 s	58 s	1	.2 s	55 s
Ø5	¶ø6		√ Ø7	<u></u> ø8
25 s	58 s	1	.2 s	55 s

Lane Group WBL WBR NBT NBR SBL SBT Lane Configurations Y
Lane Configurations Y Y Y Y Y Traffic Volume (vph) 79 16 330 139 10 370 Future Volume (vph) 79 16 330 139 10 370 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width (m) 3.7 3.7 3.7 3.7 3.7 3.7 Grade (%) 0% 0% 0% 0% 0% Storage Length (m) 0.0 0.0 175.0 130.0 Storage Lanes 1 0 1 1 Taper Length (m) 7.5 7.5 1.00 1.00 0.95 Lane Util. Factor 1.00 1.00 0.95 1.00 1.00 0.95 Ped Bike Factor 1 0 1 1 1 1 Fit Protected 0.960 0.950 0.950 1 1.00 1.00 0.95 Satd. Flow (prot) 1768 0 3579 1601 1789 3579
Traffic Volume (vph) 79 16 330 139 10 370 Future Volume (vph) 79 16 330 139 10 370 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width (m) 3.7 3.7 3.7 3.7 3.7 3.7 Grade (%) 0% 0% 0% 0% 0% Storage Length (m) 0.0 0.0 175.0 130.0 Storage Lanes 1 0 1 1 Taper Length (m) 7.5 7.5 1.00 1.00 0.95 Lane Util. Factor 1.00 1.00 0.95 1.00 0.95 9.50 Ped Bike Factor 1 0 1 1 1.00 1.00 0.950 Fit Protected 0.960 0.950 0.950 0.950 1601 1789 3579 Satd. Flow (perm) 1768 0 3579 1601 1789 3579 Right Turn on Red Yes Yes Yes Yes
Future Volume (vph) 79 16 330 139 10 370 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width (m) 3.7 3.7 3.7 3.7 3.7 3.7 Grade (%) 0% 0% 0% 0% 0% Storage Length (m) 0.0 0.0 175.0 130.0 Storage Lanes 1 0 1 1 Taper Length (m) 7.5 7.5 1.00 0.95 Lane Util. Factor 1.00 1.00 0.95 1.00 0.95 Ped Bike Factor 75 7.5 1.00 1.00 0.95 Fit Protected 0.960 0.950 0.950 1.00 1.00 1.789 3579 Fit Premitted 0.960 0.950 0.950 0.950 1.00 1.00 0.950 1.00 Satd. Flow (perm) 1768 0 3579 1601 1789 3579 Right Turn on Red Yes Yes Yes Yes Yes Y
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 Lane Width (m) 3.7 3.7 3.7 3.7 3.7 3.7 Grade (%) 0% 0% 0% 0% 0% Storage Length (m) 0.0 0.0 175.0 130.0 Storage Lanes 1 0 1 1 Taper Length (m) 7.5 7.5 7.5 Lane Util. Factor 1.00 1.00 0.95 1.00 0.95 Ped Bike Factor 0 1 1 1 Frt 0.978 0.850 0.950 0.950 Satd. Flow (prot) 1768 0 3579 1601 1789 3579 Fit Permitted 0.960 0.950
Lane Width (m) 3.7
Grade (%) 0% 0% 0% Storage Length (m) 0.0 0.0 175.0 130.0 Storage Lanes 1 0 1 1 Taper Length (m) 7.5 7.5 Lane Util. Factor 1.00 1.00 0.95 Ped Bike Factor 7.5 7.5 Frt 0.978 0.850 Flt Protected 0.960 0.950 Satd. Flow (prot) 1768 0 3579 Flt Permitted 0.960 0.950 Satd. Flow (perm) 1768 0 3579 Right Turn on Red Yes Yes Yes
Storage Length (m) 0.0 0.0 175.0 130.0 Storage Lanes 1 0 1 1 Taper Length (m) 7.5 7.5 Lane Util. Factor 1.00 1.00 0.95 Ped Bike Factor 7.5 7.5 Frt 0.978 0.850 Flt Protected 0.960 0.950 Satd. Flow (prot) 1768 0 3579 Flt Permitted 0.960 0.950 Satd. Flow (perm) 1768 0 3579 Right Turn on Red Yes Yes Yes
Storage Lanes 1 0 1 1 Taper Length (m) 7.5 7.5 Lane Util. Factor 1.00 1.00 0.95 Ped Bike Factor 7.5 7.5 Frt 0.978 0.850 Flt Protected 0.960 0.950 Satd. Flow (prot) 1768 0 3579 Flt Permitted 0.960 0.950 Satd. Flow (perm) 1768 0 3579 Right Turn on Red Yes Yes Yes
Taper Length (m) 7.5 7.5 Lane Util. Factor 1.00 1.00 0.95 1.00 0.95 Ped Bike Factor 7.5 0.978 0.850 0.950 0.950 Fit Protected 0.960 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1768 0 3579 1601 1789 3579 Flt Permitted 0.960 0.950 0
Lane Util. Factor 1.00 1.00 0.95 1.00 1.00 0.95 Ped Bike Factor
Ped Bike Factor 0.978 0.850 Frt 0.960 0.950 Fil Protected 0.960 0.950 Satd. Flow (prot) 1768 0 3579 1601 1789 3579 Fil Permitted 0.960 0.950 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1768 0 3579 1601 1789 3579 Right Turn on Red Yes Yes Yes Yes Yes Yes
Frt 0.978 0.850 Fit Protected 0.960 0.950 Satd. Flow (prot) 1768 0 3579 Fit Permitted 0.960 0.950 Satd. Flow (perm) 1768 0 3579 Satd. Flow (perm) 1768 0 3579 Right Turn on Red Yes Yes Yes
Fit Protected 0.960 0.950 Satd. Flow (prot) 1768 0 3579 1601 1789 3579 Fit Permitted 0.960 0.950 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1768 0 3579 1601 1789 3579 Right Turn on Red Yes Yes Yes Yes Yes Yes
Satd. Flow (prot) 1768 0 3579 1601 1789 3579 Flt Permitted 0.960 0.950
Flt Permitted 0.960 0.950 Satd. Flow (perm) 1768 0 3579 1601 1789 3579 Right Turn on Red Yes
Satd. Flow (perm) 1768 0 3579 1601 1789 3579 Right Turn on Red Yes Yes <td< td=""></td<>
Right Turn on Red Yes Yes
Satd Flow (RTOR) 11 151
Link Speed (k/h) 50 70 70
Link Distance (m) 1141.1 889.8 404.2
Travel Time (s) 82.2 45.8 20.8
Confl. Peds. (#/hr)
Confl. Bikes (#/hr)
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92
Growth Factor 100% 100% 100% 100% 100% 100%
Heavy Vehicles (%) 2% 2% 2% 2% 2%
Bus Blockages (#/hr) 0 0 0 0 0 0 0
Parking (#/hr)
Mid-Block Traffic (%) 0% 0%
Adj. Flow (vph) 86 17 359 151 11 402
Shared Lane Traffic (%)
Lane Group Flow (vph) 103 0 359 151 11 402
Turn Type Prot NA Perm Prot NA
Protected Phases 4 6 5 2
Permitted Phases 6
Detector Phase 4 6 6 5 2
Switch Phase
Minimum Initial (s) 7.0 20.0 20.0 5.0 20.0 Minimum Salit (c) 44.2 27.7 20.0 25.7 27.7 20.0 25.7
Minimum Split (s) 44.3 27.7 27.7 9.0 25.7
Total Split (s) 45.0 35.0 35.0 10.0 45.0
Total Split (%) 50.0% 38.9% 38.9% 11.1% 50.0%
Yellow Time (s) 3.3 3.7 3.7 3.0 3.7
All-Red Time (s) 3.0 2.0 2.0 1.0 2.0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0
Total Lost Time (s) 6.3 5.7 5.7 4.0 5.7
Lead/Lag Lag Lead
Lead-Lag Optimize? Yes Yes Yes
Recall Mode None Min Min None Min
Act Effct Green (s) 8.0 26.9 26.9 5.8 28.6

VSMP TIA 2023 Existing Conditions PM Peak Hour

Lanes, Volumes, Timings 9: Alaska Highway & Range Road

	4	•	1	۲	5	Ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Actuated g/C Ratio	0.18		0.60	0.60	0.13	0.64	
v/c Ratio	0.31		0.17	0.15	0.05	0.18	
Control Delay	17.5		6.9	2.6	19.1	5.1	
Queue Delay	0.0		0.0	0.0	0.0	0.0	
Total Delay	17.5		6.9	2.6	19.1	5.1	
LOS	В		А	А	В	А	
Approach Delay	17.5		5.6			5.5	
Approach LOS	В		А			А	
Queue Length 50th (m)	5.2		5.9	0.0	0.7	6.7	
Queue Length 95th (m)	18.2		19.2	8.1	4.6	13.3	
Internal Link Dist (m)	1117.1		865.8			380.2	
Turn Bay Length (m)				175.0	130.0		
Base Capacity (vph)	1561		2591	1201	244	3207	
Starvation Cap Reductn	0		0	0	0	0	
Spillback Cap Reductn	0		0	0	0	0	
Storage Cap Reductn	0		0	0	0	0	
Reduced v/c Ratio	0.07		0.14	0.13	0.05	0.13	
Intersection Summary							
Area Type:	Other						
Cycle Length: 90							
Actuated Cycle Length: 44.	6						
Natural Cycle: 85							
Control Type: Actuated-Une	coordinated						
Maximum v/c Ratio: 0.31							·
Intersection Signal Delay: 6	5.7			In	tersectior	LOS: A	
Intersection Capacity Utiliza	ation 32.5%			IC	CU Level o	of Service	e A
Analysis Period (min) 15							
Splits and Phases: 9: Ala	aska Highwa	y & Rang	e Road				

Lanes, Volumes, Timings 10: Range Road & Two Mile Hill Road

Lane Group EBI EBI EBI EBI WBL WBL WBL NBL NBL NBL SBL		٦	-	*	4	ł	•	•	1	1	*	ţ	~
Lane Configurations Y	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 108 654 9 117 1499 260 31 86 170 191 448 183 Ideal Flow (vphp) 1900 100 100	Lane Configurations	۲.	4 16		ሻ	ቀ ቶሴ			ଶ	1		र्च	1
Future Volume (vph) 108 654 9 117 1499 260 31 86 170 191 48 183 ideal Flow (vphpl) 1900 100 100 100 100 100 100 100 100 100 100 <td< td=""><td></td><td></td><td></td><td>9</td><td></td><td></td><td>260</td><td>31</td><td></td><td></td><td>191</td><td></td><td></td></td<>				9			260	31			191		
Ideal Flow (rphpl) 1900 1000 1000 <td></td> <td></td> <td></td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				9									
Lane Width (m) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	(,,,)												
Grade (%) 0% 0% 0% 0% 0% 0% Storage Length (m) 140.0 0.0 75.0 175.0 0.0 30.0 0.0 50.0 Storage Length (m) 7.5													
Storage Lanes 1 0 75.0 175.0 0.0 30.0 0.0 50.0 Storage Lanes 1 0 1 1 0 1 0 1 0 1 0 1 0 100 100 1.00				•••						•••			
Storage Lanes 1 0 1 1 0 1 0 1 Taper Length (m) 7.5 7.5 7.5 7.5 7.5 7.5 Lane Util, Factor 1.00 0.95 0.95 1.00 0.91 1.00 1	()	140.0		0.0	75.0		175.0	0.0	- / -	30.0	0.0	- / -	50.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Lane Util, Factor 1.00 0.95 0.95 1.00 0.91 0.91 1.00 <th1.00< th=""> 1.00 1.00</th1.00<>		7.5		-	7.5								
Ped Bike Factor 0.978 0.850 0.850 Fit Protected 0.950 0.950 0.987 0.982 0.962 Satd. Flow (prot) 1789 3571 0 1789 5029 0 0 1859 1601 0 1812 1601 Fl Permitted 0.033 0.378 0 0.862 0.682 0.685 Satd. Flow (perm) 175 3571 0 712 5029 0 0 1567 1601 0 1290 1601 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Sector 161 1270 Link Speed (kh) 60 60 50 50 1188 Confi. Peds. (#hr) 117 1649.4 1181.8 1604 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005 1005			0.95	0.95		0.91	0.91		1.00	1.00		1.00	1.00
Frt 0.998 0.978 0.850 0.850 Flt Protected 0.950 0.967 0.967 0.962 Stadt, Flow (port) 1789 3571 0 1789 5029 0 0 1859 1601 0 1812 1601 Flt Permitted 0.093 0.378 0.832 0.685 0.685 0.832 0.685 Stdt, Flow (port) 175 3571 0 712 5029 0 0 1567 1601 0 120 1601 Target Time or Red Yes				0.00									
Fit Protected 0.950 0.950 0.987 0.962 Satd. Flow (prot) 1789 3571 0 1788 5029 0 0 1859 1601 0 1812 1601 Right Turn on Red 0.933 0.378 0.832 0.685 Yes Yes <td< td=""><td></td><td></td><td>0 998</td><td></td><td></td><td>0.978</td><td></td><td></td><td></td><td>0 850</td><td></td><td></td><td>0 850</td></td<>			0 998			0.978				0 850			0 850
Satd. Flow (prot) 1789 3571 0 1789 5029 0 0 1859 1601 0 1812 1601 Flt Permitted 0.033 0.378 0.032 1601 0 1201 1601 Right Turn on Red Yes Yes<		0 950	0.000		0 950	0.010			0.987	0.000		0.962	0.000
Fit Permitted 0.093 0.378 0.832 0.685 Satd. Flow (perm) 175 3571 0 712 5029 0 0 1567 1601 0 1290 1601 Right Turn on Red Yes			3571	0		5029	0	0		1601	0		1601
Satd. Flow (perm) 175 3571 0 712 5029 0 0 1567 1601 0 1290 1601 Right Turn on Red Yes Yes<			0011	Ŭ		0020	, in the second s			1001	U		1001
Right Tum on Red Yes			3571	0		5029	0	0		1601	0		1601
Satd. Flow (RTOR) 2 40 161 127 Link Speed (kh) 60 60 50 50 Link Distance (m) 225.0 1098.9 1141.1 1649.4 Travel Time (s) 13.5 65.9 82.2 118.8 Confl. Peds. (#/hr) 100%		175	0071		112	0020		U	1007		0	1250	
Link Speed (k/h) 60 60 50 50 Link Distance (m) 225.0 1098.9 1141.1 1649.4 Travel Time (s) 13.5 65.9 82.2 118.8 Confl. Peds (#hr) Peak Hour Factor 0.92			2	103		40	103						
Link Distance (m) 225.0 1098.9 1141.1 1649.4 Travel Time (s) 13.5 65.9 82.2 118.8 Confl. Bikes (#hr) - - - - - Confl. Bikes (#hr) - - - - - - Growth Factor 0.92 <	· · · · · ·								50	101		50	121
Travel Time (s) 13.5 65.9 82.2 118.8 Confl. Peds. (#hr) Peak Hour Factor 0.92 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Confl. Peds. (#hr) Confl. Bikes (#hr) Peak Hour Factor 0.92 </td <td>· · · · ·</td> <td></td>	· · · · ·												
Confl. Bikes (#/hr) Peak Hour Factor 0.92	()		15.5			05.9			02.2			110.0	
Peak Hour Factor 0.92													
Growth Factor 100% 2% <td>. ,</td> <td>0.02</td> <td>0 02</td>	. ,	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0 02
Heavy Vehicles (%) 2% 2													
Bus Blockages (#/hr) 0													
Parking (#/hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% Adj. Flow (vph) 117 711 10 127 1629 283 34 93 185 208 52 199 Shared Lane Traffic (%) 117 721 0 127 1912 0 0 127 185 0 260 199 Turn Type pm+pt NA Perm NA Perm NA Perm NA Perm Protected Phases 5 2 6 8 8 4 4 Detector Phase 5 2 6 6 8 8 4 4 Switch Phase 5 2 6 6 8 8 4 4 Switch Phase 5 2 6 6 8 8 4 4 Switch Phase 5 2 6 6 8 8 4 4 Switch Phase 5 10.0 10.0 10.0 7.0 7.0 7.0 7.													
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 117 711 10 127 1629 283 34 93 185 208 52 199 Shared Lane Traffic (%) 117 721 0 127 1912 0 0 127 185 0 260 199 Turn Type pm+pt NA Perm NA 4		U	U	0	0	U	0	0	0	0	U	0	0
Adj. Flow (vph) 117 711 10 127 1629 283 34 93 185 208 52 199 Shared Lane Traffic (%) 117 721 0 127 1912 0 0 127 185 0 260 199 Turn Type pm+pt NA Perm NA 4 4 4 4 4 185 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.9 10<			00/			00/			00/			00/	
Shared Lane Traffic (%) Lane Group Flow (vph) 117 721 0 127 1912 0 0 127 185 0 260 199 Turn Type pm+pt NA Perm NA Perm NA Perm NA Perm NA Perm Perm NA Perm NA Perm Perm Perm NA Perm NA Perm Perm </td <td></td> <td>117</td> <td></td> <td>10</td> <td>107</td> <td></td> <td>000</td> <td>24</td> <td></td> <td>105</td> <td>200</td> <td></td> <td>100</td>		117		10	107		000	24		105	200		100
Lane Group Flow (vph)11772101271912001271850260199Turn Typepm+ptNAPermNAPermNAPermNAPermNAPermNAPermProtected Phases5268844Detector Phase52668844Switch Phase52668844Minimum Initial (s)5.010.010.010.07.07.07.07.07.0Minimum Split (s)9.031.231.231.214.814.814.843.843.843.8Total Split (s)9.055.046.046.045.045.045.045.045.045.0Yellow Time (s)3.03.73.73.3 </td <td></td> <td>117</td> <td>TT</td> <td>10</td> <td>127</td> <td>1629</td> <td>283</td> <td>34</td> <td>93</td> <td>185</td> <td>208</td> <td>52</td> <td>199</td>		117	TT	10	127	1629	283	34	93	185	208	52	199
Turn Type pm+pt NA Perm NA Perm <th< td=""><td></td><td>447</td><td>704</td><td>0</td><td>407</td><td>4040</td><td>0</td><td>0</td><td>407</td><td>405</td><td>0</td><td>000</td><td>400</td></th<>		447	704	0	407	4040	0	0	407	405	0	000	400
Protected Phases 5 2 6 8 4 Permitted Phases 2 6 8 8 4 4 Detector Phase 5 2 6 6 8 8 4 4 Switch Phase 7 2 6 6 8 8 8 4 4 Minimum Initial (s) 5.0 10.0 10.0 10.0 7.0 7.0 7.0 7.0 7.0 7.0 Minimum Split (s) 9.0 31.2 31.2 31.2 14.8 14.8 14.8 43.8 43.8 43.8 Total Split (s) 9.0 55.0 46.0 46.0% 45.0% 45.0% 45.0% 45.0% 45.0% Yellow Time (s) 3.0 3.7 3.7 3.3 <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>				0			0	-			-		
Permitted Phases268844Detector Phase526688844Switch PhaseMinimum Initial (s)5.010.010.010.07.07.07.07.07.0Minimum Split (s)9.031.231.231.214.814.814.843.843.843.8Total Split (s)9.055.046.046.045.045.045.045.045.045.0Total Split (%)9.0%55.0%46.0%46.0%45.0%45.0%45.0%45.0%45.0%45.0%Yellow Time (s)3.03.73.73.73.33.33.33.33.3All-Red Time (s)1.03.53.53.54.54.54.54.54.5Lost Time (s)4.06.27.27.27.87.86.57.8Lead/LagLagLagLagLagLagLagLagLagLagLag					Perm			Perm		Perm	Perm		Perm
Detector Phase 5 2 6 6 8 8 8 4 4 4 Switch Phase 5 2 6 6 6 8 8 8 4 4 4 Switch Phase 5 5.0 10.0 10.0 10.0 7.			2		0	6		•	ğ	•		4	
Switch Phase Minimum Initial (s) 5.0 10.0 10.0 10.0 7.0						0			•				
Minimum Initial (s)5.010.010.010.07.07.07.07.07.07.07.0Minimum Split (s)9.031.231.231.231.214.814.814.843.843.843.8Total Split (s)9.055.046.046.045.045.045.045.045.045.0Total Split (%)9.0%55.0%46.0%46.0%45.0%45.0%45.0%45.0%45.0%45.0%Yellow Time (s)3.03.73.73.73.33.33.33.33.33.3All-Red Time (s)1.03.53.53.54.54.54.54.54.5Lost Time Adjust (s)0.0-1.00.00.00.0-1.30.0Total Lost Time (s)4.06.27.27.27.87.86.57.8Lead/LagLeadLagLagLagLagLagLagLagLagLag		5	2		6	6		8	8	8	4	4	4
Minimum Split (s)9.031.231.231.214.814.814.843.843.843.8Total Split (s)9.055.046.046.045.045.045.045.045.045.0Total Split (%)9.0%55.0%46.0%46.0%45.0%45.0%45.0%45.0%45.0%45.0%45.0%45.0%Yellow Time (s)3.03.73.73.73.33.33.33.33.33.3All-Red Time (s)1.03.53.53.54.54.54.54.54.5Lost Time Adjust (s)0.0-1.00.00.00.0-1.30.0Total Lost Time (s)4.06.27.27.27.87.86.57.8Lead/LagLeadLagLagLagLagLagLagLagLagLag			10.0		10.0	10.0							
Total Split (s)9.055.046.046.045.045.045.045.045.045.045.0Total Split (%)9.0%55.0%46.0%46.0%45.0% <t< td=""><td>()</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	()												
Total Split (%)9.0%55.0%46.0%46.0%45.0%													
Yellow Time (s)3.03.73.73.73.33.33.33.33.33.3All-Red Time (s)1.03.53.53.54.54.54.54.54.54.5Lost Time Adjust (s)0.0-1.00.00.00.00.0-1.30.0Total Lost Time (s)4.06.27.27.27.87.86.57.8Lead/LagLeadLagLagLagLagLagLagLagLag													
All-Red Time (s)1.03.53.53.54.54.54.54.54.54.5Lost Time Adjust (s)0.0-1.00.00.00.00.0-1.30.0Total Lost Time (s)4.06.27.27.27.87.86.57.8Lead/LagLeadLagLagLagLagLagLagLagLag													
Lost Time Adjust (s) 0.0 -1.0 0.0 0.0 0.0 -1.3 0.0 Total Lost Time (s) 4.0 6.2 7.2 7.2 7.8 7.8 6.5 7.8 Lead/Lag Lead Lag													
Total Lost Time (s) 4.0 6.2 7.2 7.2 7.8 7.8 6.5 7.8 Lead/Lag Lead Lag								4.5			4.5		
Lead/Lag Lead Lag Lag													
			6.2						7.8	7.8		6.5	7.8
Lead-Lag Optimize? Yes Yes Yes													
	Lead-Lag Optimize?												
Recall Mode None Max Max Max Min Min Min Min Min Min								Min			Min		
Act Effct Green (s) 51.4 49.2 39.1 39.1 24.2 24.2 25.5 24.2	Act Effct Green (s)	51.4	49.2		39.1	39.1			24.2	24.2		25.5	24.2

VSMP TIA 2023 Existing Conditions PM Peak Hour

Lanes, Volumes, Timings 10: Range Road & Two Mile Hill Road

	٦	-	\mathbf{k}	•	+	•	1	Ť	1	5	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.59	0.56		0.45	0.45			0.28	0.28		0.29	0.28
v/c Ratio	0.60	0.36		0.40	0.84			0.29	0.33		0.69	0.37
Control Delay	25.3	12.3		23.8	26.8			25.8	7.0		37.3	11.3
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	25.3	12.3		23.8	26.8			25.8	7.0		37.3	11.3
LOS	С	В		С	С			С	А		D	В
Approach Delay		14.1			26.6			14.6			26.0	
Approach LOS		В			С			В			С	
Queue Length 50th (m)	7.8	31.9		13.7	97.5			16.6	2.9		38.2	9.1
Queue Length 95th (m)	#30.7	58.9		35.6	#164.9			29.8	16.4		62.5	24.2
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0					30.0			50.0
Base Capacity (vph)	196	2009		318	2271			671	778		572	759
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spillback Cap Reductn	0	0		0	0			0	0		0	0
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced v/c Ratio	0.60	0.36		0.40	0.84			0.19	0.24		0.45	0.26
Intersection Summary												
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 87.5	5											
Natural Cycle: 95												
Control Type: Semi Act-Unc	coord											
Maximum v/c Ratio: 0.84												
Intersection Signal Delay: 2	2.6			li li	ntersectior	LOS: C						
Intersection Capacity Utiliza	ation 75.3%			ŀ	CU Level o	of Service	D					
Analysis Period (min) 15												
# 95th percentile volume e			eue may l	be longe	r.							
Queue shown is maximu	im after two	cycles.										

Splits and Phases: 10: Range Road & Two Mile Hill Road

			₩ Ø4
55 s			45 s
	₹_Ø6		1 Ø8
9 s 🛛	46 s		45 s

HCM Unsignalized Intersection Capacity Analysis 11: Alaska Highway & Sumanik Dr

MovementEBLEBRNBLNBTSBTSBRLane ConfigurationsImage: configurationsImage: configurationsImage: configurationsImage: configurationsTraffic Volume (veh/h)025030027950Future Volume (Veh/h)025030027950Sign ControlStopFreeFreeStopGrade0%0%0%0%Peak Hour Factor0.920.920.920.920.92Hourly flow rate (vph)027032630354Pedestrians
Traffic Volume (veh/h) 0 25 0 300 279 50 Future Volume (Veh/h) 0 25 0 300 279 50 Sign Control Stop Free Free Free 50 Grade 0% 0% 0% 0% 0% 0% 0% 0% 0% 0 20 0.92 0.93 54 Pedestrians
Traffic Volume (veh/h) 0 25 0 300 279 50 Future Volume (Veh/h) 0 25 0 300 279 50 Sign Control Stop Free Free Free Grade 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 27 0 326 303 54 Pedestrians
Future Volume (Veh/h) 0 25 0 300 279 50 Sign Control Stop Free Free Free Grade 0% 0 0%
Sign Control Stop Free Free Grade 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 27 0 326 303 54 Pedestrians
Grade 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 27 0 326 303 54 Pedestrians
Peak Hour Factor 0.92 <th0.92< th=""> 0.92 0.92</th0.92<>
Hourly flow rate (vph) 0 27 0 326 303 54 Pedestrians Lane Width (m) Walking Speed (m/s)
Pedestrians Lane Width (m) Walking Speed (m/s)
_ane Width (m) Walking Speed (m/s)
Walking Speed (m/s)
Percent Blockage
Right turn flare (veh)
Nedian type None None
Median storage veh)
Jpstream signal (m)
pX, platoon unblocked
VC, conflicting volume 493 178 357
/C1, stage 1 conf vol
VC2, stage 2 conf vol
vCu, unblocked vol 493 178 357
C, single (s) 6.8 6.9 4.1
C, 2 stage (s)
F(s) 3.5 3.3 2.2
b0 queue free % 100 97 100
cM capacity (veh/h) 505 834 1198
Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2
Volume Total 27 163 163 202 155
Volume Left 0 0 0 0 0
Volume Right 27 0 0 0 54
SH 834 1700 1700 1700 1700
Volume to Capacity 0.03 0.10 0.10 0.12 0.09
Queue Length 95th (m) 0.8 0.0 0.0 0.0 0.0
Control Delay (s) 9.5 0.0 0.0 0.0 0.0
Lane LOS A
Approach Delay (s) 9.5 0.0 0.0
Approach LOS A
Intersection Summary
Average Delay 0.4
ntersection Capacity Utilization 19.3% ICU Level of Service
Analysis Period (min) 15

Intersection									
Intersection Delay, s/veh	10.1								
Intersection LOS	В								
Approach		EB		WB		NB		SB	
Entry Lanes		1		1		2		2	
Conflicting Circle Lanes		1		1		1		1	
Adj Approach Flow, veh/h		39		0		960		372	
Demand Flow Rate, veh/h		40		0		979		380	
Vehicles Circulating, veh/h		296		1018		39		7	
Vehicles Exiting, veh/h		91		0		297		1011	
Ped Vol Crossing Leg, #/h		0		0		0		0	
Ped Cap Adj		1.000		1.000		1.000		1.000	
Approach Delay, s/veh		4.0		0.0		12.4		4.9	
Approach LOS		А		-		В		А	
Lane	Left		Left		Left	Right	Left	Right	
Designated Moves	LTR		LTR		L	TR	L	TR	
Assumed Moves	LTR		LTR		L	TR	L	TR	
RT Channelized									
Lane Util	1.000		1.000		0.007	0.993	0.000	1.000	
Follow-Up Headway, s	2.609		2.609		2.535	2.535	2.535	2.535	
Critical Headway, s	4.976		4.976		4.544	4.544	4.544	4.544	
Entry Flow, veh/h	40		0		7	972	0	380	
Cap Entry Lane, veh/h	1020		489		1371	1371	1411	1411	
Entry HV Adj Factor	0.975		1.000		1.000	0.980	1.000	0.979	
Flow Entry, veh/h	39		0		7	953	0	372	
Cap Entry, veh/h	995		489		1371	1344	1411	1382	
V/C Ratio	0.039		0.000		0.005	0.709	0.000	0.269	
Control Delay, s/veh	4.0		7.4		2.7	12.5	2.6	4.9	
LOS	А		A		А	В	А	А	
95th %tile Queue, veh	0		0		0	6	0	1	

 \bigcirc

Lanes, Volumes, Timings <u>6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)</u>

	۶	+	*	4	Ļ	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	4Î			4		ሻ	≜ †⊅			- 4 †	1
Traffic Volume (vph)	37	0	28	0	0	0	71	1051	0	0	781	53
Future Volume (vph)	37	0	28	0	0	0	71	1051	0	0	781	53
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	0.0		0.0	100.0		0.0	0.0		80.0
Storage Lanes	1		0	0		0	2		0	0		2
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	1.00
Ped Bike Factor												
Frt		0.850										0.850
Flt Protected	0.950						0.950					
Satd. Flow (prot)	1789	1601	0	0	1883	0	1789	3579	0	0	3579	1601
Flt Permitted	0.757						0.330					
Satd. Flow (perm)	1426	1601	0	0	1883	0	622	3579	0	0	3579	1601
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		84										58
Link Speed (k/h)		50			50		_	60			60	
Link Distance (m)		310.3			283.9			321.6			541.6	
Travel Time (s)		22.3			20.4			19.3			32.5	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	40	0	30	0	0	0	77	1142	0	0	849	58
Shared Lane Traffic (%)												
Lane Group Flow (vph)	40	30	0	0	0	0	77	1142	0	0	849	58
Turn Type	Perm	NA		-	-	-	Perm	NA	-	-	NA	Perm
Protected Phases	-	4			8			2			6	
Permitted Phases	4			8	-		2			6		6
Detector Phase	4	4		8	8		2	2		6	6	6
Switch Phase					-					-		
Minimum Initial (s)	7.0	7.0		5.0	5.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	46.8	46.8		22.5	22.5		36.2	36.2		36.2	36.2	36.2
Total Split (s)	47.0	47.0		47.0	47.0		48.0	48.0		48.0	48.0	48.0
Total Split (%)	49.5%	49.5%		49.5%	49.5%		50.5%	50.5%		50.5%	50.5%	50.5%
Yellow Time (s)	3.3	3.3		3.5	3.5		3.7	3.7		3.7	3.7	3.7
All-Red Time (s)	2.5	2.5		1.0	1.0		2.5	2.5		2.5	2.5	2.5
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)	5.8	5.8			4.5		6.2	6.2			6.2	6.2
Lead/Lag	0.0	0.0					0.2	0.2			V. 2	012
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	Min
Act Effct Green (s)	12.3	12.3			Nono		40.0	40.0		141111	40.0	40.0
	12.0	12.0					10.0	10.0			10.0	10.0

VSMP TIA 2040 Background Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)

	٦	-	\mathbf{F}	∢	-	•	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.23	0.23					0.74	0.74			0.74	0.74
v/c Ratio	0.12	0.07					0.17	0.43			0.32	0.05
Control Delay	18.8	0.3					10.7	9.2			8.1	3.8
Queue Delay	0.0	0.0					0.0	0.0			0.0	0.0
Total Delay	18.8	0.3					10.7	9.2			8.1	3.8
LOS	В	Α					В	Α			А	A
Approach Delay		10.9						9.3			7.8	
Approach LOS		В						Α			А	
Queue Length 50th (m)	3.7	0.0					2.5	25.0			16.6	0.0
Queue Length 95th (m)	10.2	0.0					19.4	111.6			75.5	6.6
Internal Link Dist (m)		286.3			259.9			297.6			517.6	
Turn Bay Length (m)							100.0					80.0
Base Capacity (vph)	1133	1289					498	2865			2865	1293
Starvation Cap Reductn	0	0					0	0			0	0
Spillback Cap Reductn	0	0					0	0			0	0
Storage Cap Reductn	0	0					0	0			0	0
Reduced v/c Ratio	0.04	0.02					0.15	0.40			0.30	0.04
Intersection Summary							7					
Area Type:	Other											
Cycle Length: 95												
Actuated Cycle Length: 54.	.1											
Natural Cycle: 85												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 0.43												
Intersection Signal Delay: 8					tersection							
Intersection Capacity Utilization	ation 71.6%			IC	CU Level o	of Service	С					
Analysis Period (min) 15												

Splits and Phases: 6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	۶	+	*	4	t	*	<	1	1	*	Ŧ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	ا	1		\$		1	∱1 ≱		ľ	A	
Traffic Volume (vph)	3	0	0	5	1	25	6	823	63	8	291	18
Future Volume (vph)	3	0	0	5	1	25	6	823	63	8	291	18
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	50.0	0,0	20.0	0.0	0,0	0.0	90.0	0,0	0.0	80.0	0,0	50.0
Storage Lanes	1		1	0.0		0	1		0.0	1		0
Taper Length (m)	7.5		•	7.5		•	7.5		Ū	7.5		U
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Frt					0.890			0.989			0.991	
Flt Protected	0.950	0.950			0.992		0.950	0.505		0.950	0.551	
Satd. Flow (prot)	1700	1700	1883	0	1663	0		3539	0	1789	3546	0
Flt Permitted	1700	1700	1005	0	0.960	0	0.549	0000	U	0.296	5540	U
Satd. Flow (perm)	1789	1789	1883	0	1609	0	1034	3539	0	557	3546	0
Right Turn on Red	1709	1709	Yes	0	1009	Yes	1034	2029	Yes	557	5540	Yes
			165		27	Tes		10	165		9	res
Satd. Flow (RTOR)		50			27 50			60			9 60	
Link Speed (k/h)												
Link Distance (m)		630.9			204.4			391.2			321.6	
Travel Time (s)		45.4			14.7			23.5			19.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)	•	0%			0%		_	0%			0%	
Adj. Flow (vph)	3	0	0	5	1	27	7	895	68	9	316	20
Shared Lane Traffic (%)	50%											
Lane Group Flow (vph)	1	2	0	0	33	0	7	963	0	9	336	0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8		8	4			6			2		
Detector Phase	8	8	8	4	4		6	6		2	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	47.8	47.8	47.8	47.8	47.8		35.7	35.7		35.7	35.7	
Total Split (s)	48.0	48.0	48.0	48.0	48.0		37.0	37.0		37.0	37.0	
Total Split (%)	56.5%	56.5%	56.5%	56.5%	56.5%		43.5%	43.5%		43.5%	43.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.8		6.8		5.7	5.7		5.7	5.7	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		Min	Min		Min	Min	
Act Effct Green (s)	7.6	7.6			7.6		35.4	35.4		35.4	35.4	
							00.1	00.1		00.1	00.1	

VSMP TIA 2040 Background Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	-	•	-	-		1	Ť	1	•	ŧ	-
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
0.18	0.18			0.18		0.85	0.85		0.85	0.85	
0.00	0.01			0.11		0.01	0.32		0.02	0.11	
19.0	19.0			11.4		3.5	3.2		3.6	2.6	
0.0	0.0			0.0		0.0	0.0		0.0	0.0	
19.0	19.0			11.4		3.5	3.2		3.6	2.6	
В	В			В		А	А		А	А	
	19.0			11.4			3.2			2.6	
	В			В			А			А	
0.1	0.1			0.3		0.0	0.0		0.0	0.0	
1.1	1.6			6.4		1.2	30.8		1.5	9.8	
	606.9			180.4			367.2			297.6	
50.0						90.0			80.0		
1628	1628			1467		828	2835		446	2840	
0	0			0		0	0		0	0	
0	0			0		0	0		0	0	
0	0			0		0	0		0	0	
0.00	0.00			0.02		0.01	0.34		0.02	0.12	
her											
ď											
n 41.6%			IC	CU Level o	of Service	A					
	0.18 0.00 19.0 0.0 19.0 B 0.1 1.1 50.0 1628 0 0 0 0.00 0 0.00	0.18 0.18 0.00 0.01 19.0 19.0 0.0 0.0 19.0 19.0 B B 0.1 0.1 1.1 1.6 606.9 50.0 1628 1628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.18 0.00 0.01 19.0 19.0 0.0 0.0 19.0 19.0 B B 0.1 0.1 1.1 1.6 606.9 50.0 1628 1628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.18 0.00 0.01 19.0 19.0 0.0 0.0 19.0 19.0 B B 0.1 0.1 1.1 1.6 606.9 50.0 1628 1628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.18 0.18 0.00 0.01 0.11 19.0 19.0 11.4 0.0 0.0 0.0 0.0 19.0 19.0 11.4 B B B B 0.1 0.1 0.3 1.1 1.6 6.4 606.9 180.4 50.0 1628 1628 1467 0 0 0 0 0 0 0 0 0 0 10.0 0.00 1628 1628 1467 0	0.18 0.18 0.18 0.00 0.01 0.11 19.0 19.0 11.4 0.0 0.0 0.0 19.0 19.0 11.4 B B B B 19.0 11.4 B B B 0.1 0.1 0.3 1.1 1.6 6.4 606.9 180.4 50.0 1628 1628 1467 0 0 0 0 0 0 0 0 0 0 1620 0.00 1620 1628 1467 0	0.18 0.18 0.18 0.85 0.00 0.01 0.11 0.01 19.0 19.0 11.4 3.5 0.0 0.0 0.0 0.0 0.0 19.0 19.0 11.4 3.5 B B B A 19.0 11.4 B B B 0.1 0.1 0.3 0.0 1.1 1.6 6.4 1.2 606.9 180.4 50.0 90.0 1628 1628 1467 828 0 0 0 0 0 0 0 0 0 0 0 0 0 1628 1028 1467 828 0 0 0 0 0 1628 1028 1467 828 0 0 0 0 0 1628 1028 1467 828 0 0 0 0 0 0 0 0 0	0.18 0.18 0.18 0.85 0.85 0.00 0.01 0.11 0.01 0.32 19.0 19.0 11.4 3.5 3.2 0.0 0.0 0.0 0.0 0.0 0.0 19.0 19.0 11.4 3.5 3.2 B B B B A A 19.0 11.4 3.2 B B A A 0.1 0.1 0.3 0.0 0.0 1.1 1.6 6.4 1.2 30.8 606.9 180.4 367.2 50.0 90.0 1628 1628 1467 828 2835 0 0 0 0 0 0 0 0 0 0 0 1628 100 0 0 1628 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.18 0.18 0.85 0.85 0.00 0.01 0.11 0.01 0.32 19.0 19.0 11.4 3.5 3.2 0.0 0.0 0.0 0.0 10.0 19.0 19.0 11.4 3.5 3.2 0.0 0.0 0.0 0.0 0.0 19.0 19.0 11.4 3.5 3.2 B B B A A 19.0 11.4 3.2 B B A 19.0 11.4 3.2 B B A A 19.0 11.4 3.2 B B A A 19.0 11.4 3.2 B B A A O	0.18 0.18 0.18 0.85 0.85 0.85 0.00 0.01 0.11 0.01 0.32 0.02 19.0 19.0 11.4 3.5 3.2 3.6 0.0 0.0 0.0 0.0 0.0 0.0 19.0 19.0 11.4 3.5 3.2 3.6 0.0 0.0 0.0 0.0 0.0 0.0 19.0 11.4 3.5 3.2 3.6 B B A A A 19.0 11.4 3.2 3.6 B B A A A 19.0 11.4 3.2 3.6 0.1 0.1 0.3 0.0 0.0 11.4 3.2 30.8 1.5 606.9 180.4 367.2 50.0 90.0 80.0 0 0 0 0 0 1628 1628 1467 828 2835 </td <td>0.18 0.18 0.18 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.02 0.11 10.01 0.32 0.02 0.11 19.0 19.0 11.4 3.5 3.2 3.6 2.6 0.0</td>	0.18 0.18 0.18 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.02 0.11 10.01 0.32 0.02 0.11 19.0 19.0 11.4 3.5 3.2 3.6 2.6 0.0

Splits and Phases: 7: Hamilton Boulevard & Sumanik Drive

Lanes, Volumes, Timings 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

	٦	-	\mathbf{F}	4	+	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	A		۲	^	1	5	††	1	۲	<u></u>	1
Traffic Volume (vph)	135	885	22	261	673	341	18	147	202	611	147	106
Future Volume (vph)	135	885	22	261	673	341	18	147	202	611	147	106
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%	•		0%			0%	
Storage Length (m)	120.0	• / •	0.0	0.0	• / •	110.0	125.0	• / •	110.0	260.0	• / •	110.0
Storage Lanes	1		0	1		1	1		1	1		1
Taper Length (m)	7.5		Ŭ	7.5		•	7.5		•	7.5		•
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Frt		0.996				0.850			0.850			0.850
Flt Protected	0.950	0.000		0.950		0.000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	1789	3564	0	1789	3579	1601	1789	3579	1601	1789	3579	1601
Flt Permitted	0.235	5504	0	0.095	3319	1001	0.651	3519	1001	0.578	3319	1001
Satd. Flow (perm)	443	3564	0	179	3579	1601	1226	3579	1601	1089	3579	1601
, , , , , , , , , , , , , , , , , , ,	443	5004		179	3019	Yes	1220	3019		1009	3019	
Right Turn on Red		2	Yes						Yes			Yes
Satd. Flow (RTOR)					<u></u>	371		<u></u>	186		<u></u>	115
Link Speed (k/h)		60			60			60			60	_
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	147	962	24	284	732	371	20	160	220	664	160	115
Shared Lane Traffic (%)												
Lane Group Flow (vph)	147	986	0	284	732	371	20	160	220	664	160	115
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		4	6		6	2		2
Detector Phase	3	8		7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	25.0	25.0	5.0	25.0	25.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2	57.2	9.0	57.2	57.2
Total Split (s)	15.0	55.0		15.0	55.0	55.0	22.0	58.0	58.0	22.0	58.0	58.0
Total Split (%)	10.0%	36.7%		10.0%	36.7%	36.7%	14.7%	38.7%	38.7%	14.7%	38.7%	38.7%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7	3.7	3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.7		2.5	6.7	6.7	4.0	7.2	7.2	4.0	7.2	7.2
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Min		None	Min	Min	None	Min	Min	None	Min	Min
Act Effct Green (s)	52.1	39.3		57.2	40.4	40.4	39.0	29.4	29.4	54.9	47.7	47.7

VSMP TIA 2040 Background Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

	٦	-	\mathbf{r}	•	-	•	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.43	0.33		0.48	0.34	0.34	0.32	0.24	0.24	0.46	0.40	0.40
v/c Ratio	0.48	0.85		1.12	0.61	0.47	0.05	0.18	0.41	1.10	0.11	0.16
Control Delay	24.9	45.9		122.0	36.6	5.3	20.3	36.8	10.6	97.3	25.2	5.5
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	24.9	45.9		122.0	36.6	5.3	20.3	36.8	10.6	97.3	25.2	5.5
LOS	С	D		F	D	А	С	D	В	F	С	А
Approach Delay		43.2			45.7			21.6			73.8	
Approach LOS		D			D			С			Е	
Queue Length 50th (m)	17.7	105.6		~55.3	71.2	0.0	2.5	15.5	6.2	~158.0	11.4	0.0
Queue Length 95th (m)	41.1	171.1		#148.1	118.6	22.7	7.4	26.2	26.3	#287.2	23.2	12.2
Internal Link Dist (m)		517.6			201.0			671.8			780.3	
Turn Bay Length (m)	120.0					110.0	125.0		110.0	260.0		110.0
Base Capacity (vph)	320	1452		254	1456	871	603	1532	791	603	1578	770
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.46	0.68		1.12	0.50	0.43	0.03	0.10	0.28	1.10	0.10	0.15
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 120).3											
Natural Cycle: 150												
Control Type: Semi Act-Une	coord											
Maximum v/c Ratio: 1.12												
Intersection Signal Delay: 4					tersection							
Intersection Capacity Utiliza	ation 112.6%	6		IC	U Level c	of Service	эH					
Analysis Period (min) 15												
 Volume exceeds capac 			ally infini	te.								
Queue shown is maximu												
# 95th percentile volume			eue may	be longer								
Queue shown is maximu	um after two	cycles.										
Splits and Phases: 8: Ala	aska Highwa	v & Hami	ton Boul	evard/Two	o Mile Hill	Road						

opilis and Phases.	o. Alaska highway & hannillon boulevalu/ two willer	niii Rudu	
↑ ø1	∳ øz	▶ _{Ø3} ♥ _{Ø4}	
22 s	58 s	15 s 55 s	
Ø5	1 06	✓ Ø7 Ø7	
22 s	58 s	15 s 55 s	

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

	٦	+	\mathbf{r}	4	+	*	≺	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		ሻ	eî 👘			† †	1	5	††	
Traffic Volume (vph)	0	0	0	36	0	3	0	295	147	52	412	0
Future Volume (vph)	0	0	0	36	0	3	0	295	147	52	412	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	0.0		0.0	0.0		175.0	130.0		0.0
Storage Lanes	0		0	1		0	0		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor												
Frt					0.850				0.850			
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	1883	0	1789	1601	0	0	3579	1601	1789	3579	0
Flt Permitted				0.952						0.950		
Satd. Flow (perm)	0	1883	0	1793	1601	0	0	3579	1601	1789	3579	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					419				160			
Link Speed (k/h)		48			50			70			70	
Link Distance (m)		122.4			1141.1			889.8			404.2	
Travel Time (s)		9.2			82.2			45.8			20.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	39	0	3	0	321	160	57	448	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	39	3	0	0	321	160	57	448	0
Turn Type				Perm	NA			NA	Perm	Prot	NA	
Protected Phases		4			8			6		5	2	
Permitted Phases	4			8					6			
Detector Phase	4	4		8	8			6	6	5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0		5.0	5.0			20.0	20.0	5.0	20.0	
Minimum Split (s)	44.3	44.3		22.5	22.5			27.7	27.7	9.0	25.7	
Total Split (s)	45.0	45.0		45.0	45.0			30.0	30.0	10.0	40.0	
Total Split (%)	52.9%	52.9%		52.9%	52.9%			35.3%	35.3%	11.8%	47.1%	
Yellow Time (s)	3.3	3.3		3.5	3.5			3.7	3.7	3.0	3.7	
All-Red Time (s)	3.0	3.0		1.0	1.0			2.0	2.0	1.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.3		4.5	4.5			5.7	5.7	4.0	5.7	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes		
Recall Mode	None	None		None	None			Min	Min	None	Min	
Act Effct Green (s)				7.1	7.1			32.6	32.6	6.1	36.0	

VSMP TIA 2040 Background Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

	۶	-	\mathbf{r}	-	-	*	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio				0.17	0.17			0.77	0.77	0.14	0.85	
v/c Ratio				0.13	0.00			0.12	0.13	0.22	0.15	
Control Delay				17.3	0.0			5.7	2.4	20.4	2.5	
Queue Delay				0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay				17.3	0.0			5.7	2.4	20.4	2.5	
LOS				В	Α			А	А	С	Α	
Approach Delay					16.1			4.6			4.5	
Approach LOS					В			А			Α	
Queue Length 50th (m)				1.5	0.0			0.0	0.0	2.3	0.0	
Queue Length 95th (m)				9.2	0.0			15.2	7.6	13.0	11.8	
Internal Link Dist (m)		98.4			1117.1			865.8			380.2	
Turn Bay Length (m)									175.0	130.0		
Base Capacity (vph)				1653	1509			2843	1305	262	3130	
Starvation Cap Reductn				0	0			0	0	0	0	
Spillback Cap Reductn				0	0			0	0	0	0	
Storage Cap Reductn				0	0			0	0	0	0	
Reduced v/c Ratio				0.02	0.00			0.11	0.12	0.22	0.14	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 42.4												
Natural Cycle: 85												
Control Type: Actuated-Unco	pordinated											
Maximum v/c Ratio: 0.22							Ť					
Intersection Signal Delay: 5.					ntersection							
Intersection Capacity Utilizat	ion 36.8%			10	CU Level o	of Service	A					
Analysis Period (min) 15												
• · ·												

Splits and Phases: 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

↓ ø2		<u></u> ø₄
40 s		45 s
Ø5	1 ø6	₹Ø8
10 s	30 s	45 s

Lanes, Volumes, Timings 10: Range Road & Two Mile Hill Road

	٦	+	*	4	Ļ	*	•	1	*	×	Ļ	-∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>م</u>	∱1 ≱		<u>کر</u>	ተተኈ			ę	1		ا	1
Traffic Volume (vph)	206	1341	19	77	518	174	7	79	265	338	65	160
Future Volume (vph)	206	1341	19	77	518	174	7	79	265	338	65	160
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	140.0	0,0	0.0	75.0	0,0	175.0	0.0	0,0	30.0	0.0	0,0	50.0
Storage Lanes	1		0.0	10.0		1	0.0		1	0.0		1
Taper Length (m)	7.5		v	7.5		•	7.5		•	7.5		•
Lane Util. Factor	1.00	0.95	0.95	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.55	0.00	1.00	0.01	0.01	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.998			0.962				0.850			0.850
Flt Protected	0.950	0.330		0.950	0.302			0.996	0.000		0.960	0.000
Satd. Flow (prot)	1789	3571	0	1789	4946	0	0	1876	1601	0	1808	1601
Flt Permitted	0.282	5571	0	0.133	4940	0	U	0.955	1001	0	0.696	1001
Satd. Flow (perm)	531	3571	0	250	4946	0	0	1799	1601	0	1311	1601
· · · · · · · · · · · · · · · · · · ·	221	3071	Yes	200	4940	Yes	U	1799	Yes	U	1311	Yes
Right Turn on Red		2	res		101	res						
Satd. Flow (RTOR)					101			50	99		50	174
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		225.0			1098.9			1141.1			1649.4	
Travel Time (s)		13.5			65.9			82.2			118.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	224	1458	21	84	563	189	8	86	288	367	71	174
Shared Lane Traffic (%)												
Lane Group Flow (vph)	224	1479	0	84	752	0	0	94	288	0	438	174
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8		8	4		4
Detector Phase	5	2		6	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	9.0	31.2		31.2	31.2		14.8	14.8	14.8	43.8	43.8	43.8
Total Split (s)	9.0	46.0		37.0	37.0		44.0	44.0	44.0	44.0	44.0	44.0
Total Split (%)	10.0%	51.1%		41.1%	41.1%		48.9%	48.9%	48.9%	48.9%	48.9%	48.9%
Yellow Time (s)	3.0	3.7		3.7	3.7		3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	1.0	3.5		3.5	3.5		4.5	4.5	4.5	4.5	4.5	4.5
Lost Time Adjust (s)	0.0	-1.0		0.0	0.0			0.0	0.0		-1.3	0.0
Total Lost Time (s)	4.0	6.2		7.2	7.2			7.8	7.8		6.5	7.8
Lead/Lag	Lead	0.2		Lag	Lag						0.0	1.0
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	None	Max		Max	Max		Min	Min	Min	Min	Min	Min
Act Effct Green (s)	42.2	40.0		29.9	29.9		IVIIII	32.2	32.2	(VIII)	33.5	32.2
	74.4	-0.0		20.0	20.0			52.2	52.2		00.0	52.2

VSMP TIA 2040 Background Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 10: Range Road & Two Mile Hill Road

	٦	-	\mathbf{r}	4	←	*	1	t	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.49	0.46		0.35	0.35			0.37	0.37		0.39	0.37
v/c Ratio	0.67	0.89		0.98	0.42			0.14	0.44		0.86	0.25
Control Delay	27.5	30.7		127.7	19.9			17.9	14.8		42.4	3.8
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	27.5	30.7		127.7	19.9			17.9	14.8		42.4	3.8
LOS	С	С		F	В			В	В		D	Α
Approach Delay		30.3			30.7			15.6			31.4	
Approach LOS		С			С			В			С	
Queue Length 50th (m)	22.7	123.8		~14.8	31.6			10.0	21.8		64.6	0.0
Queue Length 95th (m)	#42.5	#172.6		#43.5	42.3			19.7	42.1		#115.1	11.5
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0					30.0			50.0
Base Capacity (vph)	333	1657		86	1783			758	732		573	775
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spillback Cap Reductn	0	0		0	0			0	0		0	0
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced v/c Ratio	0.67	0.89		0.98	0.42			0.12	0.39		0.76	0.22
Intersection Summary							7					
21	Other											
Cycle Length: 90												
Actuated Cycle Length: 86.2	2											
Natural Cycle: 95												
Control Type: Semi Act-Unc	oord											
Maximum v/c Ratio: 0.98												
Intersection Signal Delay: 29					ntersection							
Intersection Capacity Utilization 93.3% ICU Level of Service F												
Analysis Period (min) 15												
 Volume exceeds capacity, queue is theoretically infinite. 												
Queue shown is maximum after two cycles.												
# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												
Splits and Phases: 10: Range Road & Two Mile Hill Road												
Splits and Phases: 10: Ra	ange koad	& I WO IVII	e HIII RO	au								

A_{02}		↓ _{Ø4}
46 s		44 s
	₹Ø6	1 08
9 s	37 s	44 s

HCM Unsignalized Intersection Capacity Analysis 11: Alaska Highway & Sumanik Dr

	≯	*	•	1	Ļ		
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		^	A⊅		
Traffic Volume (veh/h)	0	59	0	367	405	25	
Future Volume (Veh/h)	0	59	0	367	405	25	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	64	0	399	440	27	
Pedestrians							
_ane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Vledian type				None	None		
Median storage veh)				-			
Jpstream signal (m)							
oX, platoon unblocked							
C, conflicting volume	653	234	467				
C1, stage 1 conf vol							
C2, stage 2 conf vol							
Cu, unblocked vol	653	234	467				
C, single (s)	6.8	6.9	4.1				
C, 2 stage (s)							
F (s)	3.5	3.3	2.2				
o queue free %	100	92	100				
cM capacity (veh/h)	400	768	1091				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
/olume Total	64	200	200	293	174		
/olume Left	04	0	0	0	0		
/olume Right	64	0	0	0	27		
SH	768	1700	1700	1700	1700		
/olume to Capacity	0.08	0.12	0.12	0.17	0.10		
Queue Length 95th (m)	2.1	0.12	0.12	0.0	0.0		
Control Delay (s)	10.1	0.0	0.0	0.0	0.0		
ane LOS	B	0.0	0.0	0.0	0.0		
Approach Delay (s)	10.1	0.0		0.0			
Approach LOS	B	0.0		0.0			
Intersection Summary	-						
			0.7				
Average Delay			0.7	10		f Comiles	^
ntersection Capacity Utilizatio	n		22.3%	IC	U Level o	I SELVICE	А
Analysis Period (min)			15				

Intersection Intersection Delay, s/veh Intersection LOS	11.1 B								
Intersection LOS									
	В								
Approach		EB		WB		NB		SB	
Entry Lanes		1		1		2		2	
Conflicting Circle Lanes		1		1		1		1	
Adj Approach Flow, veh/h		97		0		516		1033	
Demand Flow Rate, veh/h		99		0		526		1054	
Vehicles Circulating, veh/h		970		620		94		4	
Vehicles Exiting, veh/h		88		0		975		616	
Ped Vol Crossing Leg, #/h		0		0		0		0	
Ped Cap Adj		1.000		1.000		1.000		1.000	
Approach Delay, s/veh		9.8		0.0		6.7		13.5	
Approach LOS		А		-		А		В	
Lane	Left		Left		Left	Right	Left	Right	
Designated Moves	LTR		LTR		L	TR	L	TR	
Assumed Moves	LTR		LTR		L	TR	L	TR	
RT Channelized									
Lane Util	1.000		1.000		0.008	0.992	0.000	1.000	
Follow-Up Headway, s	2.609		2.609		2.535	2.535	2.535	2.535	
Critical Headway, s	4.976		4.976		4.544	4.544	4.544	4.544	
Entry Flow, veh/h	99		0		4	522	0	1054	
Cap Entry Lane, veh/h	513		733		1304	1304	1415	1415	
Entry HV Adj Factor	0.980		1.000		1.000	0.980	1.000	0.980	
Flow Entry, veh/h	97		0		4	512	0	1033	
Cap Entry, veh/h	503		733		1304	1278	1415	1387	
V/C Ratio	0.193		0.000		0.003	0.400	0.000	0.745	
Control Delay, s/veh	9.8		4.9		2.8	6.7	2.5	13.5	
LOS	А		A		А	А	А	В	
95th %tile Queue, veh	1		0		0	2	0	7	

Lanes, Volumes, Timings <u>6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)</u>

	≯	+	*	4	Ļ	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	eî 🗧			\$		۲	A			- 4î†	1
Traffic Volume (vph)	42	0	79	0	0	0	37	541	0	0	1057	72
Future Volume (vph)	42	0	79	0	0	0	37	541	0	0	1057	72
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	0.0		0.0	100.0		0.0	0.0		80.0
Storage Lanes	1		0	0		0	2		0	0		2
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	1.00
Ped Bike Factor												
Frt		0.850										0.850
Flt Protected	0.950						0.950					
Satd. Flow (prot)	1789	1601	0	0	1883	0	1789	3579	0	0	3579	1601
Flt Permitted	0.757						0.210					
Satd. Flow (perm)	1426	1601	0	0	1883	0	396	3579	0	0	3579	1601
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		37										78
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		310.3		~	283.9			321.6			541.6	
Travel Time (s)		22.3			20.4			19.3			32.5	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	46	0	86	0	0	0	40	588	0	0	1149	78
Shared Lane Traffic (%)												
Lane Group Flow (vph)	46	86	0	0	0	0	40	588	0	0	1149	78
Turn Type	Perm	NA					Perm	NA			NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	4	4		8	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	7.0	7.0		5.0	5.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	46.8	46.8		22.5	22.5		36.2	36.2		36.2	36.2	36.2
Total Split (s)	47.0	47.0		47.0	47.0		48.0	48.0		48.0	48.0	48.0
Total Split (%)	49.5%	49.5%		49.5%	49.5%		50.5%	50.5%		50.5%	50.5%	50.5%
Yellow Time (s)	3.3	3.3		3.5	3.5		3.7	3.7		3.7	3.7	3.7
All-Red Time (s)	2.5	2.5		1.0	1.0		2.5	2.5		2.5	2.5	2.5
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)	5.8	5.8			4.5		6.2	6.2			6.2	6.2
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Min	Min		Min	Min	Min
Act Effct Green (s)	12.2	12.2					34.5	34.5			34.5	34.5

VSMP TIA 2040 Backgournd Contitions PM Peak Hour CQ

Lanes, Volumes, Timings 6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)

	٨	+	\mathbf{F}	4	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.23	0.23					0.64	0.64			0.64	0.64
v/c Ratio	0.14	0.22					0.16	0.26			0.50	0.07
Control Delay	17.4	11.9					12.4	8.6			10.8	3.4
Queue Delay	0.0	0.0					0.0	0.0			0.0	0.0
Total Delay	17.4	11.9					12.4	8.6			10.8	3.4
LOS	В	В					В	А			В	А
Approach Delay		13.9						8.8			10.3	
Approach LOS		В						А			В	
Queue Length 50th (m)	3.0	3.2					1.3	10.4			25.1	0.0
Queue Length 95th (m)	11.3	13.7					12.3	49.6			112.3	7.6
Internal Link Dist (m)		286.3			259.9			297.6			517.6	
Turn Bay Length (m)							100.0					80.0
Base Capacity (vph)	1155	1304					324	2932			2932	1325
Starvation Cap Reductn	0	0					0	0			0	0
Spillback Cap Reductn	0	0					0	0			0	0
Storage Cap Reductn	0	0					0	0			0	0
Reduced v/c Ratio	0.04	0.07					0.12	0.20			0.39	0.06
Intersection Summary												
Area Type:	Other											
Cycle Length: 95												
Actuated Cycle Length: 54												
Natural Cycle: 85												
Control Type: Actuated-Une	coordinated											
Maximum v/c Ratio: 0.50												
Intersection Signal Delay: 1	0.1			In	tersection	n LOS: B						
Intersection Capacity Utiliza	ation 46.6%			IC	CU Level o	of Service	А					

Analysis Period (min) 15

Splits and Phases: 6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	≯	+	*	4	ł	•	•	Ť	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	र्भ	1		\$		٦	∱1 ≱		٦	A	
Traffic Volume (vph)	20	4	14	3	0	15	11	459	23	24	776	34
Future Volume (vph)	20	4	14	3	0	15	11	459	23	24	776	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	50.0	0,0	20.0	0.0	0,0	0.0	90.0	0,0	0.0	80.0	0,0	50.0
Storage Lanes	1		1	0.0		0	1		0.0	1		0
Taper Length (m)	7.5		•	7.5		•	7.5		Ŭ	7.5		•
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Frt			0.850		0.886			0.993			0.994	
Flt Protected	0.950	0.967	0.000		0.992		0.950	0.555		0.950	0.554	
Satd. Flow (prot)	1700	1730	1601	0	1655	0		3553	0	1789	3557	0
Flt Permitted	1700	1750	1001	0	0.941	0	0.323	0000	U	0.458	5557	U
Satd. Flow (perm)	1789	1789	1601	0	1570	0	608	3553	0	863	3557	0
Right Turn on Red	1709	1709	Yes	0	1570	Yes	000	3000	Yes	003	3007	Yes
			35		35	res		7	res		6	res
Satd. Flow (RTOR)		50	30									
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		630.9			204.4			391.2			321.6	
Travel Time (s)		45.4			14.7			23.5			19.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	22	4	15	3	0	16	12	499	25	26	843	37
Shared Lane Traffic (%)	41%											
Lane Group Flow (vph)	13	13	15	0	19	0	12	524	0	26	880	0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8		8	4			6			2		
Detector Phase	8	8	8	4	4		6	6		2	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	47.8	47.8	47.8	47.8	47.8		35.7	35.7		35.7	35.7	
Total Split (s)	48.0	48.0	48.0	48.0	48.0		37.0	37.0		37.0	37.0	
Total Split (%)	56.5%	56.5%	56.5%	56.5%	56.5%		43.5%	43.5%		43.5%	43.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.8		6.8		5.7	5.7		5.7	5.7	
Lead/Lag	0.0	0.0	0.0		0.0		0.1	0.1		0.1	0.1	
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		Min	Min		Min	Min	
Act Effct Green (s)	7.4	7.4	7.4	NONE	7.4		31.4	31.4		31.4	31.4	
	1.4	1.4	1.4		1.4		51.4	51.4		51.4	51.4	

VSMP TIA 2040 Backgournd Contitions PM Peak Hour CQ

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	٦	-	\mathbf{r}	•	←	•	1	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.19	0.19	0.19		0.19		0.82	0.82		0.82	0.82	
v/c Ratio	0.04	0.04	0.04		0.06		0.02	0.18		0.04	0.30	
Control Delay	15.8	15.8	3.9		5.2		4.3	3.1		4.1	3.6	
Queue Delay	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay	15.8	15.8	3.9		5.2		4.3	3.1		4.1	3.6	
LOS	В	В	А		А		Α	А		Α	А	
Approach Delay		11.5			5.2			3.2			3.6	
Approach LOS		В			А			Α			Α	
Queue Length 50th (m)	0.6	0.6	0.0		0.0		0.0	0.0		0.0	0.0	
Queue Length 95th (m)	4.4	4.4	2.1		2.8		1.9	15.7		3.1	28.2	
Internal Link Dist (m)		606.9			180.4			367.2			297.6	
Turn Bay Length (m)	50.0		20.0				90.0			80.0		
Base Capacity (vph)	1719	1719	1539		1510		512	2997		727	3000	
Starvation Cap Reductn	0	0	0		0		0	0		0	0	
Spillback Cap Reductn	0	0	0		0		0	0		0	0	
Storage Cap Reductn	0	0	0		0		0	0		0	0	
Reduced v/c Ratio	0.01	0.01	0.01		0.01		0.02	0.17		0.04	0.29	
Intersection Summary							7					
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 38	3.1											
Natural Cycle: 85												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 0.30												
Intersection Signal Delay:					tersection							
Intersection Capacity Utiliz	zation 50.3%			IC	CU Level c	of Service	Α					
Analysis Period (min) 15												

Splits and Phases: 7: Hamilton Boulevard & Sumanik Drive

	۶	+	\mathbf{F}	4	+	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜ †⊅		5	^	1	ሻ	† †	1	5	^	1
Traffic Volume (vph)	127	428	8	264	911	742	12	186	176	395	138	156
Future Volume (vph)	127	428	8	264	911	742	12	186	176	395	138	156
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	0.1	0%	0.1	0.1	0%	0.1	0.1	0%	0.1	0.1	0%	0.1
Storage Length (m)	120.0	0,0	0.0	0.0	070	110.0	125.0	0,0	110.0	260.0	070	110.0
Storage Lanes	120.0		0.0	1		1	120.0		1	1		1
Taper Length (m)	7.5		U	7.5			7.5		•	7.5		•
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor	1.00	0.35	0.35	1.00	0.55	1.00	1.00	0.35	1.00	1.00	0.00	1.00
Frt		0.997				0.850			0.850			0.850
Flt Protected	0.950	0.331		0.950		0.000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	1789	3568	0	1789	3579	1601	1789	3579	1601	1789	3579	1601
	0.128	3000	U	0.417	3019	1001	0.657	3579	1001		3019	1001
Fit Permitted	241	2560	0		2570	1601	1237	2570	1001	0.556	2570	1001
Satd. Flow (perm)	Z4 I	3568	0	785	3579		1237	3579	1601	1047	3579	1601
Right Turn on Red		4	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			<u></u>	627		<u></u>	191		00	170
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	138	465	9	287	990	807	13	202	191	429	150	170
Shared Lane Traffic (%)												
Lane Group Flow (vph)	138	474	0	287	990	807	13	202	191	429	150	170
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		4	6		6	2		2
Detector Phase	3	8		7	4	4	1	6	6	5	2	2
Switch Phase								-	-	-		
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	25.0	25.0	5.0	25.0	25.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2	57.2	9.0	57.2	57.2
Total Split (s)	12.0	55.0		12.0	55.0	55.0	25.0	58.0	58.0	25.0	58.0	58.0
Total Split (%)	8.0%	36.7%		8.0%	36.7%	36.7%	16.7%	38.7%	38.7%	16.7%	38.7%	38.7%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7	3.7	3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
• • • •	4.0	6.7		-1.5	6.7	6.7	4.0	7.2	7.2	4.0	7.2	7.2
Total Lost Time (s)												
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Min		None	Min	Min	None	Min	Min	None	Min	Min
Act Effct Green (s)	59.3	48.6		62.3	48.6	48.6	38.7	29.5	29.5	57.8	50.6	50.6

VSMP TIA 2040 Backgournd Contitions PM Peak Hour CQ

	٦	+	*	4	Ļ	•	•	t	*	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.46	0.38		0.48	0.38	0.38	0.30	0.23	0.23	0.45	0.39	0.39
v/c Ratio	0.67	0.35		0.63	0.74	0.81	0.03	0.25	0.37	0.73	0.11	0.23
Control Delay	38.2	31.0		30.1	39.8	15.8	20.4	40.8	7.0	34.1	25.8	4.5
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.2	31.0		30.1	39.8	15.8	20.4	40.8	7.0	34.1	25.8	4.5
LOS	D	С		С	D	В	С	D	А	С	С	А
Approach Delay		32.6			29.2			24.3			25.7	
Approach LOS		С			С			С			С	
Queue Length 50th (m)	17.5	42.4		38.8	106.3	37.8	1.8	22.1	0.0	77.5	11.8	0.0
Queue Length 95th (m)	#48.1	73.6		80.7	171.9	128.1	5.4	32.0	17.0	105.1	21.0	13.7
Internal Link Dist (m)		517.6			201.0			671.8			780.3	
Turn Bay Length (m)	120.0					110.0	125.0		110.0	260.0		110.0
Base Capacity (vph)	207	1341		452	1344	992	605	1414	748	589	1478	761
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.67	0.35		0.63	0.74	0.81	0.02	0.14	0.26	0.73	0.10	0.22
Intersection Summary												
Area Type:	Other											

Cycle Length: 150

Actuated Cycle Length: 129.2

Natural Cycle: 130

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.81

Intersection Signal Delay: 28.5

Intersection Capacity Utilization 96.4%

Intersection LOS: C ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

Ø1	Ø2	
25 s	58 s	12 s 55 s
Ø5	106	✓ Ø7 Ø8
25 s	58 s	12 s 55 s

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

	≯	-	$\mathbf{\hat{z}}$	4	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		<u>۲</u>	eî			<u></u>	1	۲	††	
Traffic Volume (vph)	0	0	0	98	0	20	0	412	173	13	461	0
Future Volume (vph)	0	0	0	98	0	20	0	412	173	13	461	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	-
Storage Length (m)	0.0		0.0	0.0		0.0	0.0		175.0	130.0		0.0
Storage Lanes	0		0	1		0	0		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Ped Bike Factor												
Frt					0.850				0.850			
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	1883	0	1789	1601	0	0	3579	1601	1789	3579	0
Flt Permitted				0.757						0.950		
Satd. Flow (perm)	0	1883	0	1426	1601	0	0	3579	1601	1789	3579	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					327				188			
Link Speed (k/h)		50			50		7	70			70	
Link Distance (m)		122.4			1141.1			889.8			404.2	
Travel Time (s)		8.8			82.2			45.8			20.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	0	0	0	107	0	22	0	448	188	14	501	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	107	22	0	0	448	188	14	501	0
Turn Type				Perm	NA			NA	Perm	Prot	NA	
Protected Phases		4			8			6		5	2	
Permitted Phases	4			8					6			
Detector Phase	4	4		8	8			6	6	5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0		5.0	5.0			20.0	20.0	5.0	20.0	
Minimum Split (s)	44.3	44.3		22.5	22.5			27.7	27.7	9.0	25.7	
Total Split (s)	45.0	45.0		45.0	45.0			30.0	30.0	10.0	40.0	
Total Split (%)	52.9%	52.9%		52.9%	52.9%			35.3%	35.3%	11.8%	47.1%	
Yellow Time (s)	3.3	3.3		3.5	3.5			3.7	3.7	3.0	3.7	
All-Red Time (s)	3.0	3.0		1.0	1.0			2.0	2.0	1.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.3		4.5	4.5			5.7	5.7	4.0	5.7	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes		
Recall Mode	None	None		None	None			Min	Min	None	Min	
Act Effct Green (s)				9.0	9.0			26.3	26.3	5.8	27.9	

VSMP TIA 2040 Backgournd Contitions PM Peak Hour CQ

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

	۶	-	\mathbf{r}	∢	+	*	1	1	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio				0.21	0.21			0.60	0.60	0.13	0.64	
v/c Ratio				0.37	0.04			0.21	0.18	0.06	0.22	
Control Delay				19.2	0.1			7.0	2.4	19.0	5.2	
Queue Delay				0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay				19.2	0.1			7.0	2.4	19.0	5.2	
LOS				В	Α			А	А	В	Α	
Approach Delay					15.9			5.6			5.5	
Approach LOS					В			А			А	
Queue Length 50th (m)				5.9	0.0			7.4	0.0	0.8	8.4	
Queue Length 95th (m)				20.0	0.0			23.8	9.0	5.4	16.5	
Internal Link Dist (m)		98.4			1117.1			865.8			380.2	
Turn Bay Length (m)									175.0	130.0		
Base Capacity (vph)				1319	1506			2339	1111	248	2959	
Starvation Cap Reductn				0	0			0	0	0	0	
Spillback Cap Reductn				0	0			0	0	0	0	
Storage Cap Reductn				0	0			0	0	0	0	
Reduced v/c Ratio				0.08	0.01			0.19	0.17	0.06	0.17	
Intersection Summary												
· · · / · ·	Other											
Cycle Length: 85												
Actuated Cycle Length: 43.8												
Natural Cycle: 85												
Control Type: Actuated-Unco	pordinated											
Maximum v/c Ratio: 0.37												
Intersection Signal Delay: 6.6					ntersection							
Intersection Capacity Utilizat	ion 30.6%			10	CU Level o	of Service	A					
Analysis Period (min) 15												

Splits and Phases: 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

 \checkmark

↓ ø2		<u></u> 04
40 s		45 s
Ø5	Ø6	₩ Ø8
10 s	30 s	45 s

	٨	+	*	4	Ļ	•	•	1	1	×	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	Åî≽		<u>کر</u>	ተተቡ			र्स	1		ب ا ا	1
Traffic Volume (vph)	135	692	11	145	1587	324	39	108	211	238	59	227
Future Volume (vph)	135	692	11	145	1587	324	39	108	211	238	59	227
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	140.0	0,0	0.0	75.0	0,0	175.0	0.0	0,0	30.0	0.0	0,0	50.0
Storage Lanes	1		0.0	1		1	0		1	0		1
Taper Length (m)	7.5		Ū	7.5			7.5		•	7.5		•
Lane Util. Factor	1.00	0.95	0.95	1.00	0.91	0.91	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.55	0.55	1.00	0.01	0.51	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.998			0.975				0.850			0.850
Flt Protected	0.950	0.330		0.950	0.375			0.987	0.000		0.961	0.000
Satd. Flow (prot)	1789	3571	0	1789	5013	0	0	1859	1601	0	1810	1601
Flt Permitted	0.093	5571	0	0.362	3013	0	U	0.751	1001	0	0.665	1001
Satd. Flow (perm)	175	3571	0	682	5013	0	0	1414	1601	0	1252	1601
, , , , , , , , , , , , , , , , , , ,	C/1	3071	Yes	002	5015	Yes	U	1414	Yes	U	1292	Yes
Right Turn on Red		2	res		54	res						
Satd. Flow (RTOR)					51			50	143		50	126
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		225.0			1098.9			1141.1			1649.4	
Travel Time (s)		13.5			65.9			82.2			118.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	147	752	12	158	1725	352	42	117	229	259	64	247
Shared Lane Traffic (%)												
Lane Group Flow (vph)	147	764	0	158	2077	0	0	159	229	0	323	247
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8		8	4		4
Detector Phase	5	2		6	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	9.0	31.2		31.2	31.2		14.8	14.8	14.8	43.8	43.8	43.8
Total Split (s)	9.0	55.0		46.0	46.0		45.0	45.0	45.0	45.0	45.0	45.0
Total Split (%)	9.0%	55.0%		46.0%	46.0%		45.0%	45.0%	45.0%	45.0%	45.0%	45.0%
Yellow Time (s)	3.0	3.7		3.7	3.7		3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	1.0	3.5		3.5	3.5		4.5	4.5	4.5	4.5	4.5	4.5
Lost Time Adjust (s)	0.0	-1.0		0.0	0.0			0.0	0.0		-1.3	0.0
Total Lost Time (s)	4.0	6.2		7.2	7.2			7.8	7.8		6.5	7.8
Lead/Lag	Lead	0.2		Lag	Lag			1.0	1.0		0.0	7.0
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	None	Max		Max	Max		Min	Min	Min	Min	Min	Min
Act Effct Green (s)	51.3	49.1		39.1	39.1		IVIIII	29.3	29.3	(VIII)	30.6	29.3
	51.5	49.1		39.1	J9.1			29.0	29.0		50.0	29.0

VSMP TIA 2040 Backgournd Contitions PM Peak Hour CQ

	≯	-	\mathbf{r}	4	-	*	1	Ť	1	1	↓	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.55	0.53		0.42	0.42			0.32	0.32		0.33	0.32
v/c Ratio	0.80	0.40		0.55	0.97			0.36	0.38		0.78	0.42
Control Delay	46.5	14.8		31.4	40.5			26.0	10.9		41.6	13.6
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	46.5	14.8		31.4	40.5			26.0	10.9		41.6	13.6
LOS	D	В		С	D			С	В		D	В
Approach Delay		19.9			39.9			17.1			29.4	
Approach LOS		В			D			В			С	
Queue Length 50th (m)	12.5	42.2		21.4	131.2			21.5	10.9		51.0	15.7
Queue Length 95th (m)	#46.5	63.2		47.2	#189.5			37.4	27.7		82.3	34.6
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0					30.0			50.0
Base Capacity (vph)	184	1897		288	2146			572	733		524	723
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spillback Cap Reductn	0	0		0	0			0	0		0	0
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced v/c Ratio	0.80	0.40		0.55	0.97			0.28	0.31		0.62	0.34
Intersection Summary												
Area Type: C	other											
Cycle Length: 100												
Actuated Cycle Length: 92.5												
Natural Cycle: 95												
Control Type: Semi Act-Unco	ord											
Maximum v/c Ratio: 0.97							~					
Intersection Signal Delay: 31.					ntersection							
Intersection Capacity Utilization	on 83.1%			10	CU Level o	of Service	E					
Analysis Period (min) 15												
# 95th percentile volume ex			eue may b	be longe	r. Š							
Queue shown is maximum	n after two	cycles.										

Splits and Phases: 10: Range Road & Two Mile Hill Road

			▼ Ø4
55 s			45 s
	★_ø6		1 p8
9 s 🛛	46 s		45 s

HCM Unsignalized Intersection Capacity Analysis 11: Alaska Highway & Sumanik Dr

	≯	*	•	Ť	Ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		<u>†</u> †	A		
Traffic Volume (veh/h)	0	25	0	374	360	50	
Future Volume (Veh/h)	0	25	0	374	360	50	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	27	0	407	391	54	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	622	222	445				
vC1, stage 1 conf vol	•==						
vC2, stage 2 conf vol							
vCu, unblocked vol	622	222	445				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	97	100				
cM capacity (veh/h)	419	781	1112	`		~	
,					00.0		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	27	204	204	261	184		
Volume Left	0	0	0	0	0		
Volume Right	27	0	0	0	54		
cSH	781	1700	1700	1700	1700		
Volume to Capacity	0.03	0.12	0.12	0.15	0.11		
Queue Length 95th (m)	0.8	0.0	0.0	0.0	0.0		
Control Delay (s)	9.8	0.0	0.0	0.0	0.0		
Lane LOS	А						
Approach Delay (s)	9.8	0.0		0.0			
Approach LOS	А						
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utilization	on		21.5%	IC	U Level o	f Service	
Analysis Period (min)			15				

APPENDIX C – SYNCHRO REPORTS – INTERSECTION IMPROVEMENTS (2040 BACKGROUND CONDITION)

	٦	+	*	4	+	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜ †⊅		ሻሻ	^	1	<u></u>	^	1	ካካ	^	1
Traffic Volume (vph)	135	885	22	261	673	341	18	147	202	611	147	106
Future Volume (vph)	135	885	22	261	673	341	18	147	202	611	147	106
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	120.0		0.0	0.0	- / -	110.0	125.0	- / -	110.0	260.0	- / -	110.0
Storage Lanes	1		0	2		1	1		1	2		1
Taper Length (m)	7.5		•	7.5		•	7.5		•	7.5		
Lane Util. Factor	1.00	0.95	0.95	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Ped Bike Factor	1.00	0.00	0.00	0.01	0.00	1.00	1.00	0.00	1.00	0.01	0.00	1.00
Frt		0.996				0.850			0.850			0.850
Flt Protected	0.950	0.000		0.950		0.000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	1789	3564	0	3471	3579	1601	1789	3579	1601	3471	3579	1601
Flt Permitted	0.304	0004	0	0.950	0010	1001	0.651	0010	1001	0.950	0070	1001
Satd. Flow (perm)	573	3564	0	3471	3579	1601	1226	3579	1601	3471	3579	1601
Right Turn on Red	515	5504	Yes	J#7 1	5515	Yes	1220	5515	Yes	5471	5515	Yes
Satd. Flow (RTOR)		2	165			371			220			115
· · · · ·		60			60	3/1		60	220		60	115
Link Speed (k/h)												
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)				0.00	0.00		0.00	0.00		0.00	0.00	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	147	962	24	284	732	371	20	160	220	664	160	115
Shared Lane Traffic (%)												
Lane Group Flow (vph)	147	986	0	284	732	371	20	160	220	664	160	115
Turn Type	pm+pt	NA		Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8					4	6		6			2
Detector Phase	3	8		7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	9.0	9.0	5.0	9.0	9.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2	57.2	9.0	57.2	57.2
Total Split (s)	45.0	55.0		45.0	55.0	55.0	9.0	15.0	15.0	35.0	41.0	41.0
Total Split (%)	30.0%	36.7%		30.0%	36.7%	36.7%	6.0%	10.0%	10.0%	23.3%	27.3%	27.3%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7	3.7	3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0	0.0	-1.5	0.0	0.0
Total Lost Time (s)	4.0	6.7		2.5	6.7	6.7	4.0	7.2	7.2	2.5	7.2	7.2
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Min		None	Min	Min	None	Min	Min	None	Min	Min
Act Effct Green (s)	53.9	40.0		19.8	47.1	47.1	22.6	14.0	14.0	29.7	43.4	43.4
	55.9	-U.U		10.0	77.1	1.1	22.0	0.71	17.0	23.1	-J. T	+

VSMP TIA 2040 Background Conditions AM Peak Hour (Improvement)

	٦	+	*	4	Ļ	*	•	†	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.44	0.32		0.16	0.38	0.38	0.18	0.11	0.11	0.24	0.35	0.35
v/c Ratio	0.41	0.85		0.51	0.54	0.44	0.08	0.39	0.58	0.79	0.13	0.18
Control Delay	21.9	48.4		54.1	33.9	5.2	27.3	54.0	12.6	53.5	29.0	5.9
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	21.9	48.4		54.1	33.9	5.2	27.3	54.0	12.6	53.5	29.0	5.9
LOS	С	D		D	С	А	С	D	В	D	С	Α
Approach Delay		45.0			30.3			29.9			43.5	
Approach LOS		D			С			С			D	
Queue Length 50th (m)	15.8	106.7		30.7	64.9	0.0	2.8	19.1	0.0	70.8	12.8	0.0
Queue Length 95th (m)	46.1	#237.1		64.3	141.2	24.8	8.7	33.2	21.0	#171.8	26.1	12.6
Internal Link Dist (m)		517.6			201.0			671.8			780.3	
Turn Bay Length (m)	120.0					110.0	125.0		110.0	260.0		110.0
Base Capacity (vph)	727	1466		1255	1527	895	248	406	377	960	1269	642
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.20	0.67		0.23	0.48	0.41	0.08	0.39	0.58	0.69	0.13	0.18
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 12	23.4											
Natural Cycle: 150												
Control Type: Semi Act-Ur	ncoord											
Maximum v/c Ratio: 0.85												
Intersection Signal Delay:	37.8			In	tersection	n LOS: D						

Intersection Capacity Utilization 75.8%

Analysis Period (min) 15

ICU Level of Service D

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

Ø1 Ø2		✓ Ø3	▲ Ø4
9 s <mark>4</mark> 1 s		45 s	55 s
Ø5	¶ø6	6 07	<u></u> Ø8
35 s	15 s	45 s	55 s

	۶	-	*	*	ł	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	∱1 ≱		ሻሻ	^	1	ሻ	††	1	ካካ	<u>†</u> †	1
Traffic Volume (vph)	127	428	8	264	911	742	12	186	176	395	138	156
Future Volume (vph)	127	428	8	264	911	742	12	186	176	395	138	156
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	-
Storage Length (m)	120.0		0.0	0.0		110.0	125.0		110.0	260.0		110.0
Storage Lanes	1		0	2		1	1		1	2		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	0.95	0.95	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Ped Bike Factor												
Frt		0.997				0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1789	3568	0	3471	3579	1601	1789	3579	1601	3471	3579	1601
Flt Permitted	0.187			0.950			0.657			0.950		
Satd. Flow (perm)	352	3568	0	3471	3579	1601	1237	3579	1601	3471	3579	1601
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1				740			191			170
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	138	465	9	287	990	807	13	202	191	429	150	170
Shared Lane Traffic (%)												
Lane Group Flow (vph)	138	474	0	287	990	807	13	202	191	429	150	170
Turn Type	pm+pt	NA		Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8					4	6		6			2
Detector Phase	3	8		7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	9.0	9.0	5.0	9.0	9.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2	57.2	9.0	57.2	57.2
Total Split (s)	45.0	55.0		45.0	55.0	55.0	9.0	15.0	15.0	35.0	41.0	41.0
Total Split (%)	30.0%	36.7%		30.0%	36.7%	36.7%	6.0%	10.0%	10.0%	23.3%	27.3%	27.3%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7	3.7	3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0	0.0	-1.5	0.0	0.0
Total Lost Time (s)	4.0	6.7		2.5	6.7	6.7	4.0	7.2	7.2	2.5	7.2	7.2
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Min		None	Min	Min	None	Min	Min	None	Min	Min
Act Effct Green (s)	58.6	44.6		19.0	50.8	50.8	22.4	13.8	13.8	21.3	36.5	36.5
ACTENCT Green (S)	0.00	44.0		19.0	0.UC	0.UC	22.4	13.0	13.0	21.3	30.5	30.5

VSMP TIA 2040 Backgournd Contitions PM Peak Hour (Improvement)

	٦	+	*	4	Ļ	•	•	Ť	*	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.49	0.38		0.16	0.43	0.43	0.19	0.12	0.12	0.18	0.31	0.31
v/c Ratio	0.45	0.35		0.52	0.65	0.73	0.05	0.48	0.54	0.69	0.14	0.28
Control Delay	20.4	31.4		51.8	32.9	8.8	26.8	52.4	12.1	53.9	29.4	5.3
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.4	31.4		51.8	32.9	8.8	26.8	52.4	12.1	53.9	29.4	5.3
LOS	С	С		D	С	А	С	D	В	D	С	Α
Approach Delay		28.9			26.2			32.6			38.0	
Approach LOS		С			С			С			D	
Queue Length 50th (m)	11.1	35.1		28.1	78.9	7.7	1.9	22.0	0.0	42.8	12.2	0.0
Queue Length 95th (m)	43.6	93.5		64.8	#216.6	80.1	6.5	40.4	19.7	93.5	24.5	14.8
Internal Link Dist (m)		517.6			201.0			671.8			780.3	
Turn Bay Length (m)	120.0					110.0	125.0		110.0	260.0		110.0
Base Capacity (vph)	726	1526		1306	1552	1113	258	417	355	999	1241	666
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.19	0.31		0.22	0.64	0.73	0.05	0.48	0.54	0.43	0.12	0.26
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 1	18.5											
Natural Cycle: 140												
Control Type: Actuated-U	ncoordinated											

Maximum v/c Ratio: 0.73

Intersection Signal Delay: 29.6

Intersection Capacity Utilization 75.4%

Analysis Period (min) 15

Intersection LOS: C ICU Level of Service D

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

▲ ø2 ♦ ø2	Ø3	4 [⊕] Ø4	
9 s 41 s	45 s	55 s	
Ø5	¶ø6 € Ø7	<u>→</u> ₂₈	
35 s 15	s 🥖 45 s	55 s	

	٦	-	\mathbf{i}	4	+	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	4† ‡		ሻ	^	1		र्स	1	5	eî 👘	
Traffic Volume (vph)	206	1341	19	77	518	174	7	79	265	338	65	160
Future Volume (vph)	206	1341	19	77	518	174	7	79	265	338	65	160
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	140.0	• / •	0.0	75.0	• / •	175.0	0.0	• /•	30.0	0.0	• / •	50.0
Storage Lanes	1		0.0	1		1	0		1	1		0
Taper Length (m)	7.5		Ŭ	7.5		•	7.5		•	7.5		Ū
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.01	0.01	1.00	0.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.998				0.850			0.850		0.893	
Flt Protected	0.950	0.000		0.950		0.000		0.996	0.000	0.950	0.000	
Satd. Flow (prot)	1789	5132	0	1789	5142	1601	0	1876	1601	1789	1682	0
Flt Permitted	0.430	0102	U	0.129	5142	1001		0.967	1001	0.696	1002	U
Satd. Flow (perm)	810	5132	0	243	5142	1601	0	1821	1601	1311	1682	0
Right Turn on Red	010	5152	Yes	243	5142	Yes	U	1021	Yes	1311	1002	Yes
•		2	res			189			168		168	165
Satd. Flow (RTOR)		60			60	109		50	100		50	
Link Speed (k/h)											50 1649.4	
Link Distance (m)		225.0			1098.9			1141.1				
Travel Time (s)		13.5			65.9			82.2			118.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)								• • •			• • •	
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	224	1458	21	84	563	189	8	86	288	367	71	174
Shared Lane Traffic (%)												
Lane Group Flow (vph)	224	1479	0	84	563	189	0	94	288	367	245	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		
Detector Phase	5	2		1	6	6	8	8	8	4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	9.0	31.2		9.5	31.2	31.2	14.8	14.8	14.8	43.8	43.8	
Total Split (s)	9.0	35.0		11.0	37.0	37.0	44.0	44.0	44.0	44.0	44.0	
Total Split (%)	10.0%	38.9%		12.2%	41.1%	41.1%	48.9%	48.9%	48.9%	48.9%	48.9%	
Yellow Time (s)	3.0	3.7		3.5	3.7	3.7	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	1.0	3.5		1.0	3.5	3.5	4.5	4.5	4.5	4.5	4.5	
Lost Time Adjust (s)	0.0	-1.0		0.0	0.0	0.0		0.0	0.0	-1.8	-1.3	
Total Lost Time (s)	4.0	6.2		4.5	7.2	7.2		7.8	7.8	6.0	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	Max		None	Max	Max	Min	Min	Min	Min	Min	
Act Effct Green (s)	37.7	31.6		39.1	30.0	30.0		28.4	28.4	30.3	29.8	
	01.1	01.0		00.1	50.0	00.0		20.7	20.7	50.0	20.0	

VSMP TIA 2040 Background Conditions AM Peak Hour (Improvement)

	٦	-	\mathbf{r}	4	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Actuated g/C Ratio	0.46	0.38		0.47	0.36	0.36		0.34	0.34	0.37	0.36	
v/c Ratio	0.52	0.75		0.36	0.30	0.27		0.15	0.44	0.77	0.34	
Control Delay	20.4	27.7		17.3	20.5	4.6		18.4	10.3	34.2	7.5	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay	20.4	27.7		17.3	20.5	4.6		18.4	10.3	34.2	7.5	
LOS	С	С		В	С	А		В	В	С	А	
Approach Delay		26.8			16.6			12.3			23.5	
Approach LOS		С			В			В			С	
Queue Length 50th (m)	19.6	79.1		6.8	23.6	0.0		10.0	13.1	49.6	7.9	
Queue Length 95th (m)	37.5	#115.7		15.9	35.6	13.5		19.7	31.5	80.9	22.3	
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0		175.0			30.0			
Base Capacity (vph)	428	1962		237	1868	702		803	800	607	860	
Starvation Cap Reductn	0	0		0	0	0		0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0		0	0	0	0	
Storage Cap Reductn	0	0		0	0	0		0	0	0	0	
Reduced v/c Ratio	0.52	0.75		0.35	0.30	0.27		0.12	0.36	0.60	0.28	
Intersection Summary												
51	Other											
Cycle Length: 90												
Actuated Cycle Length: 82.7	7											
Natural Cycle: 85												
Control Type: Semi Act-Unc	oord											
Maximum v/c Ratio: 0.77				· · · · · · · · · · · · · · · · · · ·								
Intersection Signal Delay: 22					tersectior							
Intersection Capacity Utilization	tion 78.6%)		IC	U Level o	of Service	e D					
Analysis Period (min) 15												
# 95th percentile volume e			eue may	be longer								
Queue shown is maximu	m after two	o cycles.										
Splits and Phases: 10: Ra	ange Road	& Two Mil	e Hill Roa	əd								
					4	Ø4						
11s 35s					44 s	т						

🕈 Ø1	-+1Ø2	★ [™] Ø4	
11 s	35 s	44 s	
∕ ø₅		1 08	
9 s	37 s	44 s	

	٨	+	*	4	+	•	•	1	*	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ተተኈ		ኘ	^	1		र्स	1	<u> </u>	eî 👘	
Traffic Volume (vph)	135	692	11	145	1587	324	39	108	211	238	59	227
Future Volume (vph)	135	692	11	145	1587	324	39	108	211	238	59	227
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	140.0		0.0	75.0		175.0	0.0		30.0	0.0		50.0
Storage Lanes	1		0	1		1	0		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998				0.850			0.850		0.881	
Flt Protected	0.950			0.950				0.987		0.950		
Satd. Flow (prot)	1789	5132	0	1789	5142	1601	0	1859	1601	1789	1659	0
Flt Permitted	0.142	• • • • -	-	0.297				0.763		0.656		-
Satd. Flow (perm)	267	5132	0	559	5142	1601	0	1437	1601	1236	1659	0
Right Turn on Red		0.01	Yes		• • • •	Yes			Yes			Yes
Satd. Flow (RTOR)		3				352			206		167	
Link Speed (k/h)		60			60	002		50	200		50	
Link Distance (m)		225.0			1098.9			1141.1			1649.4	
Travel Time (s)		13.5			65.9			82.2			118.8	
Confl. Peds. (#/hr)		10.0			00.0			02.2			110.0	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	Ţ			-		•	Ţ	Ū.	•	Ū.	•	Ū
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	147	752	12	158	1725	352	42	117	229	259	64	247
Shared Lane Traffic (%)											•.	
Lane Group Flow (vph)	147	764	0	158	1725	352	0	159	229	259	311	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	-
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6	-	6	8	-	8	4	-	
Detector Phase	5	2		1	6	6	8	8	8	4	4	
Switch Phase						•		•	•	•	•	
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	9.0	31.2		9.5	31.2	31.2	14.8	14.8	14.8	43.8	43.8	
Total Split (s)	9.0	35.0		11.0	37.0	37.0	44.0	44.0	44.0	44.0	44.0	
Total Split (%)	10.0%	38.9%		12.2%	41.1%	41.1%	48.9%	48.9%	48.9%	48.9%	48.9%	
Yellow Time (s)	3.0	3.7		3.5	3.7	3.7	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	1.0	3.5		1.0	3.5	3.5	4.5	4.5	4.5	4.5	4.5	
Lost Time Adjust (s)	0.0	-1.0		0.0	0.0	0.0		0.0	0.0	-1.8	-1.3	
Total Lost Time (s)	4.0	6.2		4.5	7.2	7.2		7.8	7.8	6.0	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag				0.0	0.0	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	Max		None	Max	Max	Min	Min	Min	Min	Min	
Act Effct Green (s)	36.4	29.2		39.4	30.1	30.1	101111	23.4	23.4	25.2	24.7	
	50.7	20.2		00. 1	00.1	00.1		20.7	20.7	20.2	£7.1	

VSMP TIA 2040 Backgournd Contitions PM Peak Hour (Improvement)

	٦	-	\mathbf{r}	4	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Actuated g/C Ratio	0.47	0.38		0.51	0.39	0.39		0.30	0.30	0.32	0.32	
v/c Ratio	0.66	0.40		0.41	0.87	0.42		0.37	0.37	0.65	0.49	
Control Delay	29.5	19.8		14.8	29.5	4.2		23.0	5.6	29.9	11.7	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay	29.5	19.8		14.8	29.5	4.2		23.0	5.6	29.9	11.7	
LOS	С	В		В	С	А		С	А	С	В	
Approach Delay		21.4			24.5			12.7			20.0	
Approach LOS		С			С			В			В	
Queue Length 50th (m)	9.9	29.3		10.9	83.1	0.0		18.1	2.4	31.8	15.5	
Queue Length 95th (m)	#36.7	49.4		27.3	#145.0	17.6		32.2	15.6	53.9	34.4	
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0		175.0			30.0			
Base Capacity (vph)	224	1925		387	1991	835		675	862	610	893	
Starvation Cap Reductn	0	0		0	0	0		0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0		0	0	0	0	
Storage Cap Reductn	0	0		0	0	0		0	0	0	0	
Reduced v/c Ratio	0.66	0.40		0.41	0.87	0.42		0.24	0.27	0.42	0.35	
Intersection Summary												
21	Other											
Cycle Length: 90												
Actuated Cycle Length: 77.8	3											
Natural Cycle: 85												
Control Type: Semi Act-Unc	coord											
Maximum v/c Ratio: 0.87												
Intersection Signal Delay: 2					ntersection							
Intersection Capacity Utiliza	ition 84.3%			ŀ	CU Level (of Service	ε					
Analysis Period (min) 15												
# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximu	im after two	cycles.										
Onlike and Diseases 40 D	Dest	0 T		1								
Splits and Phases: 10: Ra	ange Road	& TWO MI	e Hill Roa	ad								
					41	Ø4						
11 s 35 s					44 s							

73	3/ 5	775	

-t_{øs}

₹ø6

Ø5

Intersection									
Intersection Delay, s/veh	11.0								
Intersection LOS	В								
Approach		EB		WB		NB		SB	
Entry Lanes		1		1		2		2	
Conflicting Circle Lanes		1		1		1		1	
Adj Approach Flow, veh/h		39		120		983		406	
Demand Flow Rate, veh/h		40		123		1002		414	
Vehicles Circulating, veh/h		363		1025		59		40	
Vehicles Exiting, veh/h		91		36		344		1108	
Ped Vol Crossing Leg, #/h		0		0		0		0	
Ped Cap Adj		1.000		1.000		1.000		1.000	
Approach Delay, s/veh		4.3		11.4		13.6		5.1	
Approach LOS		А		В		В		А	
Lane	Left		Left		Left	Right	Left	Right	
Designated Moves	LTR		LTR		L	TR	L	TR	
Assumed Moves	LTR		LTR		L	TR	L	TR	
RT Channelized									
Lane Util	1.000		1.000		0.007	0.993	0.048	0.952	
Follow-Up Headway, s	2.609		2.609		2.535	2.535	2.535	2.535	
Critical Headway, s	4.976		4.976		4.544	4.544	4.544	4.544	
Entry Flow, veh/h	40		123		7	995	20	394	
Cap Entry Lane, veh/h	953		485		1346	1346	1369	1369	
Entry HV Adj Factor	0.975		0.976		1.000	0.981	1.000	0.979	
Flow Entry, veh/h	39		120		7	976	20	386	
Cap Entry, veh/h	929		473		1346	1320	1369	1341	
V/C Ratio	0.042		0.254		0.005	0.739	0.015	0.288	
Control Delay, s/veh	4.3		11.4		2.7	13.7	2.7	5.2	
LOS	А		В		А	В	А	А	
95th %tile Queue, veh	0		1		0	7	0	1	

 \bigcirc

HCM Unsignalized Intersection Capacity Analysis 2: Internal Rd (CGC Access Extension) & Internal Rd (McIntyre Dr Extension)

	۶	+	*	4	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	8	16	9	0	59	0	51	0	0	0	11	0
Future Volume (vph)	8	16	9	0	59	0	51	0	0	0	11	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	9	17	10	0	64	0	55	0	0	0	12	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	36	64	55	12								
Volume Left (vph)	9	0	55	0								
Volume Right (vph)	10	0	0	0								
Hadj (s)	-0.08	0.03	0.23	0.03								
Departure Headway (s)	4.0	4.1	4.4	4.2								
Degree Utilization, x	0.04	0.07	0.07	0.01								
Capacity (veh/h)	870	854	797	829								
Control Delay (s)	7.2	7.4	7.7	7.3								
Approach Delay (s)	7.2	7.4	7.7	7.3								
Approach LOS	А	А	А	А		K						
Intersection Summary												
Delay			7.5									
Level of Service			А									
Intersection Capacity Utiliza	ation		24.7%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 3: Internal Rd (McIntyre Dr Extension) & Internal Rd (Range Rd Extenstion)

MovementEBTEBRWBLWBTNBLNBRLane ConfigurationsImage: ConfigurationsImage: ConfigurationsImage: ConfigurationsImage: ConfigurationsTraffic Volume (veh/h)16603276086Future Volume (Veh/h)16603276086Sign ControlFreeFreeStopGrade0%0%0%Peak Hour Factor0.920.920.920.920.920.920.92Hourly flow rate (vph)18003583093PedestriansLane Width (m)Walking Speed (m/s)Emage: Configuration (m/s)Emage: Configuration (m/s)
Lane Configurations Image: height display="block">Image: height display="block">Image: height display="block" Traffic Volume (veh/h) 166 0 32 76 0 86 Future Volume (Veh/h) 166 0 32 76 0 86 Sign Control Free Free Stop 0 86 Grade 0% 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 180 0 35 83 0 93 Pedestrians Image: Height (m) Image: Heigh
Traffic Volume (veh/h) 166 0 32 76 0 86 Future Volume (Veh/h) 166 0 32 76 0 86 Sign Control Free Free Stop 6 6 6 76 0 86 Sign Control Free Free Stop 76 0 86 76 0 86 Grade 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0 180 0 35 83 0 93 93 Pedestrians Lane Width (m) Walking Speed (m/s) Walking Speed (m/s) 180 0 35 10
Future Volume (Veh/h) 166 0 32 76 0 86 Sign Control Free Free Stop Grade 0%
Sign Control Free Free Stop Grade 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 180 0 35 83 0 93 Pedestrians Lane Width (m) Walking Speed (m/s) 100 10
Grade 0% 0% 0% Peak Hour Factor 0.92 0.93 Pedestrians Dedestrians Lane Width (m) Use the second seco
Hourly flow rate (vph) 180 0 35 83 0 93 Pedestrians Lane Width (m) Walking Speed (m/s)
Pedestrians Lane Width (m) Walking Speed (m/s)
Pedestrians Lane Width (m) Walking Speed (m/s)
Walking Speed (m/s)
Percent Blockage
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (m) 356
pX, platoon unblocked
vC, conflicting volume 180 333 180
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 180 333 180
tC, single (s) 4.1 6.4 6.2
tC, 2 stage (s)
tF (s) 2.2 3.5 3.3
p0 queue free % 97 100 89
cM capacity (veh/h) 1396 645 863
Direction, Lane # EB 1 WB 1 NB 1
Volume Total 180 118 93
Volume Left 0 35 0
Volume Right 0 0 93
cSH 1700 1396 863
Volume to Capacity 0.11 0.03 0.11
Queue Length 95th (m) 0.0 0.6 2.7
Control Delay (s) 0.0 2.4 9.7
Approach LOS A
Intersection Summary
Average Delay 3.0
Intersection Capacity Utilization 29.8% ICU Level of Service
Analysis Period (min) 15

HCM Unsignalized Intersection Capacity Analysis 4: Valleyview Dr & Sumanik Drive/Sumanik Dr

	۶	→	\mathbf{r}	4	←	*	1	1	1	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			÷			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	71	41	2	21	14	25	74	0	11	59	0	31
Future Volume (vph)	71	41	2	21	14	25	74	0	11	59	0	31
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	77	45	2	23	15	27	80	0	12	64	0	34
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	124	65	92	98								
Volume Left (vph)	77	23	80	64								
Volume Right (vph)	2	27	12	34								
Hadj (s)	0.15	-0.14	0.13	-0.04								
Departure Headway (s)	4.6	4.4	4.6	4.4								
Degree Utilization, x	0.16	0.08	0.12	0.12								
Capacity (veh/h)	753	775	744	768								
Control Delay (s)	8.4	7.7	8.2	8.0								
Approach Delay (s)	8.4	7.7	8.2	8.0								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			8.1									
Level of Service			А									
Intersection Capacity Utilizat	ion		23.7%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

Intersection							
Intersection Delay, s/veh	3.7						
Intersection LOS	А						
Approach		EB		WB	Ν	1B	SB
Entry Lanes		1		1		1	1
Conflicting Circle Lanes		1		1		1	1
Adj Approach Flow, veh/h		139		143		69	39
Demand Flow Rate, veh/h		142		146	-	71	40
Vehicles Circulating, veh/h		40		107	1	59	78
Vehicles Exiting, veh/h		78		123		23	175
Ped Vol Crossing Leg, #/h		0		0		0	0
Ped Cap Adj		1.000		1.000	1.0		1.000
Approach Delay, s/veh		3.6		4.0	3	5.7	3.2
Approach LOS		А		А		А	А
Lane	Left		Left		Left	Left	
Designated Moves	LTR		LTR		LTR	LTR	
Assumed Moves	LTR		LTR		LTR	LTR	
RT Channelized							
Lane Util	1.000		1.000		1.000	1.000	
Follow-Up Headway, s	2.609		2.609		2.609	2.609	
Critical Headway, s	4.976		4.976		4.976	4.976	
Entry Flow, veh/h	142		146		71	40	
Cap Entry Lane, veh/h	1325		1237		1173	1274	
Entry HV Adj Factor	0.980		0.979		0.974	0.969	
Flow Entry, veh/h	139		143		69	39	
Cap Entry, veh/h	1298		1212		1143	1235	
V/C Ratio	0.107		0.118		0.061	0.031	
Control Delay, s/veh	3.6		4.0		3.7	3.2	
LOS	А		A		А	A	
95th %tile Queue, veh	0		0		0	0	

 $\left(\right)$

Lanes, Volumes, Timings <u>6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)</u>

VBL	WBT							
	101	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	\$		٦	A			{î†	1
6	4	219	71	1138	4	65	805	53
6	4	219	71	1138	4	65	805	53
900	1900	1900	1900	1900	1900	1900	1900	1900
3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
	0%			0%			0%	
0.0		0.0	100.0		0.0	0.0		80.0
0		0	2		0	0		2
7.5			7.5			7.5		
1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	1.00
C	0.871							0.850
C	0.999		0.950				0.996	
0	1639	0	1789	3579	0	0	3564	1601
C	0.994		0.269				0.736	
0	1631	0	507	3579	0	0	2634	1601
		Yes			Yes			Yes
	24							58
	48			60			60	
2	283.9			321.6			541.6	
	21.3			19.3			32.5	
).92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
00% 1	100%	100%	100%	100%	100%	100%	100%	100%
2%	2%	2%	2%	2%	2%	2%	2%	2%
0	0	0	0	0	0	0	0	0
	0%			0%			0%	
7	4	238	77	1237	4	71	875	58
0		0	77		0	0		58
erm			Perm	NA		Perm		Perm
	8			2			6	
8			2			6		6
8	8		2	2		6	6	6
5.0	5.0		10.0	10.0		10.0	10.0	10.0
	22.5		36.2			36.2	36.2	36.2
47.0	47.0		48.0	48.0		48.0		48.0
			50.5%	50.5%		50.5%		50.5%
								3.7
1.0	1.0		2.5			2.5	2.5	2.5
	0.0		0.0					0.0
	4.5		6.2	6.2			6.2	6.2
one l	None		Min	Min		Min	Min	Min
	17.7		41.8	41.8			41.8	41.8
	900 3.7 0.0 0 7.5 1.00 0 0 0 0 0 0 0 0 0 0 0 0	900 1900 3.7 3.7 0% 0.0 0 7.5 1.00 1.00 0.871 0.999 0 1639 0.994 0 1631 24 48 283.9 21.3 0.92 0.92 00% 100% 2% 2% 0 0 0% 7 4 0 249 erm NA 8 8 8 8 8 8 8 8 8 8 8 8 8	900 1900 1900 3.7 3.7 3.7 0% 0.0 0.0 0 0.0 0 0 0 0 7.5 1.00 1.00 0.871 0.999 0 0 1639 0 0.994 0 1631 0 0.994 0 1631 0 0 1631 0 Yes 24 48 283.9 21.3 0.92 0.92 0.92 0.92 00% 100% 100% 2% 2% 2% 2% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 249 0 0 0 0 0 0 0 249 0 0 50 5.0 5.0 <td>900 1900 1900 1900 1900 3.7 3.7 3.7 3.7 3.7 0% 0.0 0.0 100.0 0 0 0 2 7.5 7.5 7.5 1.00 1.00 1.00 1.00 0.871 0.999 0.950 0 1639 0 1789 0.994 0.269 0 1631 0 1631 0 507 Yes 24 48 283.9 21.3 0.92 0.92 0.92 0.92 0.92 00% 100% 100% 100% 2% 2% 2% 2% 2% 0 0 0 0 0% 7 4 238 77 0 249 0 77 7 0 249 0 77 8 2 3.5 3.5</td> <td>900 1900 1900 1900 1900 1900 3.7 3.7 3.7 3.7 3.7 3.7 0% 0% 0% 0% 0% 0.0 0.0 100.0 0 2 7.5 7.5 7.5 1.00 0.999 0.950 0.871 0.999 0.269 0 0 1639 0 1789 3579 0.994 0.269 0 1631 0 507 3579 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92<td>900 1900 1900 1900 1900 1900 3.7 3.7 3.7 3.7 3.7 3.7 3.7 0% 0% 0% 0% 0% 0% 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0 0 2 0 7.5 7.5 7.5 1.00 1.00 1.00 1.00 0.950 0 0.950 0 1639 0 1789 3579 0 0 0.994 0.269 0 90 92 0.92 0.92 0.92 0 1631 0 507 3579 0 92 193 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92</td><td>900 1900 <th1< td=""><td>900 1900 <th1< td=""></th1<></td></th1<></td></td>	900 1900 1900 1900 1900 3.7 3.7 3.7 3.7 3.7 0% 0.0 0.0 100.0 0 0 0 2 7.5 7.5 7.5 1.00 1.00 1.00 1.00 0.871 0.999 0.950 0 1639 0 1789 0.994 0.269 0 1631 0 1631 0 507 Yes 24 48 283.9 21.3 0.92 0.92 0.92 0.92 0.92 00% 100% 100% 100% 2% 2% 2% 2% 2% 0 0 0 0 0% 7 4 238 77 0 249 0 77 7 0 249 0 77 8 2 3.5 3.5	900 1900 1900 1900 1900 1900 3.7 3.7 3.7 3.7 3.7 3.7 0% 0% 0% 0% 0% 0.0 0.0 100.0 0 2 7.5 7.5 7.5 1.00 0.999 0.950 0.871 0.999 0.269 0 0 1639 0 1789 3579 0.994 0.269 0 1631 0 507 3579 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 <td>900 1900 1900 1900 1900 1900 3.7 3.7 3.7 3.7 3.7 3.7 3.7 0% 0% 0% 0% 0% 0% 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0 0 2 0 7.5 7.5 7.5 1.00 1.00 1.00 1.00 0.950 0 0.950 0 1639 0 1789 3579 0 0 0.994 0.269 0 90 92 0.92 0.92 0.92 0 1631 0 507 3579 0 92 193 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92</td> <td>900 1900 <th1< td=""><td>900 1900 <th1< td=""></th1<></td></th1<></td>	900 1900 1900 1900 1900 1900 3.7 3.7 3.7 3.7 3.7 3.7 3.7 0% 0% 0% 0% 0% 0% 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0 0 2 0 7.5 7.5 7.5 1.00 1.00 1.00 1.00 0.950 0 0.950 0 1639 0 1789 3579 0 0 0.994 0.269 0 90 92 0.92 0.92 0.92 0 1631 0 507 3579 0 92 193 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	900 1900 <th1< td=""><td>900 1900 <th1< td=""></th1<></td></th1<>	900 1900 <th1< td=""></th1<>

VSMP TIA 2040 Total Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)

	٨	+	*	4	Ļ	•	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.23	0.23			0.25		0.59	0.59			0.59	0.59
v/c Ratio	0.20	0.08			0.58		0.26	0.59			0.61	0.06
Control Delay	22.4	7.8			25.3		13.9	12.8			14.0	3.9
Queue Delay	0.0	0.0			0.0		0.0	0.0			0.0	0.0
Total Delay	22.4	7.8			25.3		13.9	12.8			14.0	3.9
LOS	С	А			С		В	В			В	А
Approach Delay		15.9			25.3			12.8			13.4	
Approach LOS		В			С			В			В	
Queue Length 50th (m)	4.2	0.2			25.2		3.7	40.4			31.3	0.0
Queue Length 95th (m)	10.7	5.2			43.2		21.0	125.5			103.7	6.6
Internal Link Dist (m)		286.3			259.9			297.6			517.6	
Turn Bay Length (m)							100.0					80.0
Base Capacity (vph)	508	982			1018		308	2177			1602	996
Starvation Cap Reductn	0	0			0		0	0			0	0
Spillback Cap Reductn	0	0			0		0	0			0	0
Storage Cap Reductn	0	0			0		0	0			0	0
Reduced v/c Ratio	0.08	0.03			0.24		0.25	0.57			0.59	0.06
Intersection Summary												

intersection outfinding	
Area Type: Other	
Cycle Length: 95	
Actuated Cycle Length: 70.5	
Natural Cycle: 95	
Control Type: Actuated-Uncoordinated	
Maximum v/c Ratio: 0.61	
Intersection Signal Delay: 14.3	Intersection LOS: B
Intersection Capacity Utilization 93.0%	ICU Level of Service F
Analysis Period (min) 15	

Splits and Phases: 6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	۶	+	*	4	t	*	<	1	1	*	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	ا	1		\$		1	∱1 ≱		2	A	
Traffic Volume (vph)	3	0	0	14	1	46	6	895	66	18	311	18
Future Volume (vph)	3	0	0	14	1	46	6	895	66	18	311	18
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	50.0	0,0	20.0	0.0	0,0	0.0	90.0	0,0	0.0	80.0	0,0	50.0
Storage Lanes	1		1	0.0		0	1		0.0	1		0
Taper Length (m)	7.5		•	7.5		•	7.5		Ū	7.5		Ū
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Frt					0.898			0.990			0.992	
Flt Protected	0.950	0.950			0.989		0.950	0.550		0.950	0.552	
Satd. Flow (prot)	1700	1700	1883	0	1673	0		3543	0	1789	3550	0
Flt Permitted	0.889	0.889	1005	0	0.921	0	0.538	0040	U	0.259	3330	U
Satd. Flow (perm)	1591	1591	1883	0	1558	0	1013	3543	0	488	3550	0
Right Turn on Red	1091	1591	Yes	0	1000	Yes	1013	5545	Yes	400	3330	Yes
			165		31	Tes		10	165		8	Tes
Satd. Flow (RTOR)		50			50			60			o 60	
Link Speed (k/h)												
Link Distance (m)		630.9			204.4			391.2			321.6	
Travel Time (s)		45.4			14.7			23.5			19.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)	•	0%			0%		_	0%			0%	
Adj. Flow (vph)	3	0	0	15	1	50	7	973	72	20	338	20
Shared Lane Traffic (%)	50%											
Lane Group Flow (vph)	1	2	0	0	66	0	7	1045	0	20	358	0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8		8	4			6			2		
Detector Phase	8	8	8	4	4		6	6		2	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	47.8	47.8	47.8	47.8	47.8		35.7	35.7		35.7	35.7	
Total Split (s)	48.0	48.0	48.0	48.0	48.0		37.0	37.0		37.0	37.0	
Total Split (%)	56.5%	56.5%	56.5%	56.5%	56.5%		43.5%	43.5%		43.5%	43.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.8		6.8		5.7	5.7		5.7	5.7	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None		Min	Min		Min	Min	
Act Effct Green (s)	8.3	8.3			8.3		35.2	35.2		35.2	35.2	
	0.0	0.0			0.0		00.L	00.L		00.L	00.L	

VSMP TIA 2040 Total Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

۶	-	\mathbf{r}	4	-	*	1	t	1	1	Ļ	~
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
0.18	0.18			0.18		0.76	0.76		0.76	0.76	
0.00	0.01			0.22		0.01	0.39		0.05	0.13	
18.0	18.5			14.5		4.5	4.9		5.2	3.8	
0.0	0.0			0.0		0.0	0.0		0.0	0.0	
18.0	18.5			14.5		4.5	4.9		5.2	3.8	
В	В			В		А	А		А	А	
	18.3			14.5			4.9			3.9	
	В			В			А			А	
0.1	0.2			3.3		0.2	23.3		0.6	6.2	
1.1	1.5			11.0		1.4	38.2		2.9	11.5	
	606.9			180.4			367.2			297.6	
50.0						90.0			80.0		
1365	1365			1341		744	2607		358	2612	
0	0			0		0	0		0	0	
0	0			0		0	0		0	0	
0	0			0		0	0		0	0	
0.00	0.00			0.05		0.01	0.40		0.06	0.14	
Other											
ord											
on 47.6%			IC	CU Level o	of Service	Α					
	0.18 0.00 18.0 0.0 18.0 B 0.1 1.1 50.0 1365 0 0 0 0 0.00 20ther	0.18 0.18 0.00 0.01 18.0 18.5 0.0 0.0 18.0 18.5 B B 18.3 B 0.1 0.2 1.1 1.5 606.9 50.0 1365 1365 0 0 0 0 0 0 0 0 0.00 0.00 Dther	0.18 0.18 0.00 0.01 18.0 18.5 0.0 0.0 18.0 18.5 B B 18.3 B 0.1 0.2 1.1 1.5 606.9 50.0 1365 1365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.18 0.00 0.01 18.0 18.5 0.0 0.0 18.0 18.5 B B 18.3 B 0.1 0.2 1.1 1.5 606.9 50.0 1365 1365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.18 0.18 0.00 0.01 0.22 18.0 18.5 14.5 0.0 0.0 0.0 18.0 18.5 14.5 B B B 18.3 14.5 B 0.1 0.2 3.3 1.1 1.5 11.0 606.9 180.4 50.0 0 0 1365 1365 1341 0 0 0 0 0 0 0 0 0 0.00 0.00 0.05	0.18 0.18 0.18 0.00 0.01 0.22 18.0 18.5 14.5 0.0 0.0 0.0 18.0 18.5 14.5 B B B 18.3 14.5 B 0.1 0.2 3.3 1.1 1.5 11.0 606.9 180.4 50.0 0 0 1365 1365 1341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0	0.18 0.18 0.76 0.00 0.01 0.22 0.01 18.0 18.5 14.5 4.5 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 B B A 18.3 14.5 18.3 14.5 B B A 18.3 14.5 14.5 14.5 14.5 B B B B A 18.3 14.5 18.3 14.5 11.0 1.4 606.9 180.4 50.0 90.0 1365 1365 1341 744 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0.00 0.05 0.01 0 0 0 0 0 0.00 0.00 0.05 0.01 0 0 0 0 0 0 </td <td>0.18 0.18 0.76 0.76 0.00 0.01 0.22 0.01 0.39 18.0 18.5 14.5 4.5 4.9 0.0 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 4.9 0.0 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 4.9 B B A A 18.3 14.5 4.9 B B A A 0.1 0.2 3.3 0.2 23.3 1.1 1.5 11.0 1.4 38.2 606.9 180.4 367.2 50.0 90.0 1365 1365 1341 744 2607 0 0 0 0 0 0 0.00 0.00 0.01 0.40 0</td> <td>0.18 0.18 0.76 0.76 0.00 0.01 0.22 0.01 0.39 18.0 18.5 14.5 4.5 4.9 0.0 0.0 0.0 0.0 10.0 18.0 18.5 14.5 4.5 4.9 0.0 0.0 0.0 0.0 10.0 18.0 18.5 14.5 4.5 4.9 B B A A 18.3 14.5 4.9 B B A A 0.1 0.2 3.3 0.2 23.3 1.1 1.5 11.0 1.4 38.2 606.9 180.4 367.2 360.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0.18 0.18 0.76 0.76 0.76 0.00 0.01 0.22 0.01 0.39 0.05 18.0 18.5 14.5 4.5 4.9 5.2 0.0 0.0 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 4.9 5.2 0.0 0.0 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 4.9 5.2 B B B A A A 18.3 14.5 4.9 5.2 9 606.9 180.4 367.2 50.0 90.0 80.0 1365 1365 1341 744 2607 358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0.18 0.18 0.18 0.76 0.71 15 0.66 2 29<!--</td--></td>	0.18 0.18 0.76 0.76 0.00 0.01 0.22 0.01 0.39 18.0 18.5 14.5 4.5 4.9 0.0 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 4.9 0.0 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 4.9 B B A A 18.3 14.5 4.9 B B A A 0.1 0.2 3.3 0.2 23.3 1.1 1.5 11.0 1.4 38.2 606.9 180.4 367.2 50.0 90.0 1365 1365 1341 744 2607 0 0 0 0 0 0 0.00 0.00 0.01 0.40 0	0.18 0.18 0.76 0.76 0.00 0.01 0.22 0.01 0.39 18.0 18.5 14.5 4.5 4.9 0.0 0.0 0.0 0.0 10.0 18.0 18.5 14.5 4.5 4.9 0.0 0.0 0.0 0.0 10.0 18.0 18.5 14.5 4.5 4.9 B B A A 18.3 14.5 4.9 B B A A 0.1 0.2 3.3 0.2 23.3 1.1 1.5 11.0 1.4 38.2 606.9 180.4 367.2 360.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.18 0.76 0.76 0.76 0.00 0.01 0.22 0.01 0.39 0.05 18.0 18.5 14.5 4.5 4.9 5.2 0.0 0.0 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 4.9 5.2 0.0 0.0 0.0 0.0 0.0 0.0 18.0 18.5 14.5 4.5 4.9 5.2 B B B A A A 18.3 14.5 4.9 5.2 9 606.9 180.4 367.2 50.0 90.0 80.0 1365 1365 1341 744 2607 358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.18 0.18 0.76 0.71 15 0.66 2 29 </td

Splits and Phases: 7: Hamilton Boulevard & Sumanik Drive

	٦	→	\mathbf{F}	4	+	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	≜ †⊅		ካካ	††	1	<u></u>	^	1	ካካ	^	1
Traffic Volume (vph)	180	1120	22	404	740	341	18	180	382	611	173	120
Future Volume (vph)	180	1120	22	404	740	341	18	180	382	611	173	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	120.0		0.0	0.0		110.0	125.0		110.0	260.0		110.0
Storage Lanes	1		0	2		1	1		1	2		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	0.95	0.95	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Ped Bike Factor				0.01	0.00						0.00	
Frt		0.997				0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1789	3568	0	3471	3579	1601	1789	3579	1601	3471	3579	1601
Flt Permitted	0.303		•	0.950			0.633			0.950		
Satd. Flow (perm)	571	3568	0	3471	3579	1601	1192	3579	1601	3471	3579	1601
Right Turn on Red	011	0000	Yes	0171	0010	Yes	1102	0010	Yes	0111	0010	Yes
Satd. Flow (RTOR)		1	100			371			390			130
Link Speed (k/h)		60			60			60	000		60	100
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	
Confl. Peds. (#/hr)		02.0			10.0			71.7			-0.0	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	•		-			•	Ţ	•	•	•	•	
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	196	1217	24	439	804	371	20	196	415	664	188	130
Shared Lane Traffic (%)	100			100		0.1	20		110			100
Lane Group Flow (vph)	196	1241	0	439	804	371	20	196	415	664	188	130
Turn Type	pm+pt	NA		Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8	Ŭ		•	•	4	6	Ŭ	6	•	-	2
Detector Phase	3	8		7	4	4	1	6	6	5	2	2
Switch Phase				•	•	•	•	, e	•	•	_	_
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	9.0	9.0	5.0	9.0	9.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2	57.2	9.0	57.2	57.2
Total Split (s)	45.0	55.0		45.0	55.0	55.0	9.0	15.0	15.0	35.0	41.0	41.0
Total Split (%)	30.0%	36.7%		30.0%	36.7%	36.7%	6.0%	10.0%	10.0%	23.3%	27.3%	27.3%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7	3.7	3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.7		2.5	6.7	6.7	4.0	7.2	7.2	4.0	7.2	7.2
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Min		None	Min	Min	None	Min	Min	None	Min	Min
Act Effct Green (s)	65.7	49.6		26.9	61.5	61.5	22.7	14.3	14.3	29.7	43.0	43.0
	00.1	-J.U		20.0	01.0	01.0	22.1	17.0	17.5	23.1	-J.U	-0.0

VSMP TIA 2040 Total Conditions AM Peak Hour CQ

	ار	→	*	4	Ļ	•	•	1	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.46	0.35		0.19	0.43	0.43	0.16	0.10	0.10	0.21	0.30	0.30
v/c Ratio	0.52	0.99		0.67	0.52	0.41	0.09	0.54	0.81	0.91	0.17	0.23
Control Delay	23.1	68.8		59.5	33.8	4.8	32.6	65.1	20.2	71.8	37.0	6.4
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.1	68.8		59.5	33.8	4.8	32.6	65.1	20.2	71.8	37.0	6.4
LOS	С	Е		Е	С	А	С	Е	С	Е	D	Α
Approach Delay		62.6			34.1			34.6			56.5	
Approach LOS		E			С			С			Е	
Queue Length 50th (m)	22.3	165.4		55.5	76.9	0.0	3.4	27.3	6.4	85.4	20.4	0.0
Queue Length 95th (m)	59.6	#369.4		97.7	164.0	24.8	9.8	42.7	40.3	#194.5	33.2	14.5
Internal Link Dist (m)		517.6			201.0			671.8			780.3	
Turn Bay Length (m)	120.0					110.0	125.0		110.0	260.0		110.0
Base Capacity (vph)	691	1251		1070	1557	905	213	361	512	780	1088	576
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.28	0.99		0.41	0.52	0.41	0.09	0.54	0.81	0.85	0.17	0.23
Intersection Summary												
Area Type:	Other											
Cycle Length: 150												
Actuated Cycle Length: 14	41.4											
Natural Cycle: 150												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 0.99												

Maximum v/c Ratio: 0.99

Intersection Signal Delay: 47.7 Intersection Capacity Utilization 87.7% Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

▲ ø2 ♦ ø2	Ø3	4 [⊕] Ø4	
9 s 41 s	45 s	55 s	
Ø5	¶ø6 € Ø7	<u>→</u> ₂₈	
35 s 15	s 🥖 45 s	55 s	

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

	≯	-	\mathbf{F}	4	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		۲	4Î			† †	1	۲	††	
Traffic Volume (vph)	213	37	126	36	19	3	87	295	147	52	464	134
Future Volume (vph)	213	37	126	36	19	3	87	295	147	52	464	134
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	0.0		0.0	0.0		175.0	130.0		0.0
Storage Lanes	0		0	1		0	0		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor												
Frt		0.955			0.981				0.850		0.966	
Flt Protected		0.972		0.950				0.989		0.950		
Satd. Flow (prot)	0	1748	0	1789	1848	0	0	3539	1601	1789	3457	0
Flt Permitted		0.811		0.545				0.699		0.950		
Satd. Flow (perm)	0	1459	0	1026	1848	0	0	2501	1601	1789	3457	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		39			3				160		53	
Link Speed (k/h)		48			50			70			70	
Link Distance (m)		122.4			1141.1			889.8			404.2	
Travel Time (s)		9.2			82.2			45.8			20.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	232	40	137	39	21	3	95	321	160	57	504	146
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	409	0	39	24	0	0	416	160	57	650	0
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Prot	NA	
Protected Phases	·	4		-	8		-	6	-	5	2	
Permitted Phases	4			8			6		6			
Detector Phase	4	4		8	8		6	6	6	5	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0		5.0	5.0		20.0	20.0	20.0	5.0	20.0	
Minimum Split (s)	44.3	44.3		22.5	22.5		27.7	27.7	27.7	9.0	25.7	
Total Split (s)	45.0	45.0		45.0	45.0		30.0	30.0	30.0	10.0	40.0	
Total Split (%)	52.9%	52.9%		52.9%	52.9%		35.3%	35.3%	35.3%	11.8%	47.1%	
Yellow Time (s)	3.3	3.3		3.5	3.5		3.7	3.7	3.7	3.0	3.7	
All-Red Time (s)	3.0	3.0		1.0	1.0		2.0	2.0	2.0	1.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.3		4.5	4.5			5.7	5.7	4.0	5.7	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Recall Mode	None	None		None	None		Min	Min	Min	None	Min	
Act Effct Green (s)		20.9		22.8	22.8			21.8	21.8	6.2	27.0	

VSMP TIA 2040 Total Conditions AM Peak Hour CQ

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

	≯	-	\mathbf{r}	1	+	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio		0.34		0.38	0.38			0.36	0.36	0.10	0.45	
v/c Ratio		0.77		0.10	0.03			0.46	0.24	0.31	0.41	
Control Delay		27.1		13.4	11.6			20.4	5.1	35.9	12.4	
Queue Delay		0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay		27.1		13.4	11.6			20.4	5.1	35.9	12.4	
LOS		С		В	В			С	А	D	В	
Approach Delay		27.1			12.8			16.1			14.3	
Approach LOS		С			В			В			В	
Queue Length 50th (m)		38.5		2.9	1.5			20.5	0.0	6.3	21.7	
Queue Length 95th (m)		72.8		8.6	5.7			42.5	12.6	19.8	46.9	
Internal Link Dist (m)		98.4			1117.1			865.8			380.2	
Turn Bay Length (m)									175.0	130.0		
Base Capacity (vph)		999		726	1308			1061	771	187	2092	
Starvation Cap Reductn		0		0	0			0	0	0	0	
Spillback Cap Reductn		0		0	0			0	0	0	0	
Storage Cap Reductn		0		0	0			0	0	0	0	
Reduced v/c Ratio		0.41		0.05	0.02			0.39	0.21	0.30	0.31	
Intersection Summary												
21	ner											
Cycle Length: 85												
Actuated Cycle Length: 60.6												
Natural Cycle: 85												
Control Type: Actuated-Uncoor	rdinated											
Maximum v/c Ratio: 0.77												
Intersection Signal Delay: 17.8				In	tersection	n LOS: B						
Intersection Capacity Utilization	า 76.6%			IC	CU Level o	of Service	D					
Analysis Period (min) 15												

Splits and Phases: 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

Ø2		<u></u> ø₄
40 s		45 s
Ø5		₹ Ø8
10 s	30 s	45 s

	٦	+	*	4	Ļ	*	<	1	*	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<u>ተተ</u> ኑ		5	<u></u>	1		र्स	1	ሻ	eî 👘	
Traffic Volume (vph)	226	1712	19	77	700	174	7	116	265	338	84	168
Future Volume (vph)	226	1712	19	77	700	174	7	116	265	338	84	168
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	140.0		0.0	75.0		175.0	0.0		30.0	0.0		50.0
Storage Lanes	1		0	1		1	0		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998				0.850			0.850		0.900	
FIt Protected	0.950			0.950				0.997		0.950		
Satd. Flow (prot)	1789	5132	0	1789	5142	1601	0	1878	1601	1789	1695	0
Flt Permitted	0.328			0.129				0.975		0.671		
Satd. Flow (perm)	618	5132	0	243	5142	1601	0	1836	1601	1264	1695	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2				189			167		138	
Link Speed (k/h)		60			60		7	50			50	
Link Distance (m)		225.0			1098.9			1141.1			1649.4	
Travel Time (s)		13.5			65.9			82.2			118.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	246	1861	21	84	761	189	8	126	288	367	91	183
Shared Lane Traffic (%)												
Lane Group Flow (vph)	246	1882	0	84	761	189	0	134	288	367	274	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		
Detector Phase	5	2		1	6	6	8	8	8	4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	9.0	31.2		9.5	31.2	31.2	14.8	14.8	14.8	43.8	43.8	
Total Split (s)	9.0	35.0		11.0	37.0	37.0	44.0	44.0	44.0	44.0	44.0	
Total Split (%)	10.0%	38.9%		12.2%	41.1%	41.1%	48.9%	48.9%	48.9%	48.9%	48.9%	
Yellow Time (s)	3.0	3.7		3.5	3.7	3.7	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	1.0	3.5		1.0	3.5	3.5	4.5	4.5	4.5	4.5	4.5	
Lost Time Adjust (s)	0.0	-1.0		0.0	0.0	0.0		0.0	0.0	-1.8	-1.3	
Total Lost Time (s)	4.0	6.2		4.5	7.2	7.2		7.8	7.8	6.0	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode						N.4.		N 41 -	N 41			
	None	Max		None	Max	Max 30.0	Min	Min	Min	Min	Min 30.3	

VSMP TIA 2040 Total Conditions AM Peak Hour CQ

	٦	-	\mathbf{i}	•	+	*	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.45	0.38		0.47	0.36	0.36		0.35	0.35	0.37	0.36	
v/c Ratio	0.70	0.97		0.36	0.41	0.27		0.21	0.43	0.79	0.39	
Control Delay	30.1	42.9		17.5	21.8	4.6		19.1	10.3	35.8	10.6	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay	30.1	42.9		17.5	21.8	4.6		19.1	10.3	35.8	10.6	
LOS	С	D		В	С	А		В	В	D	В	
Approach Delay		41.4			18.3			13.1			25.1	
Approach LOS		D			В			В			С	
Queue Length 50th (m)	22.5	~128.0		7.0	34.2	0.0		14.6	13.2	50.3	14.5	
Queue Length 95th (m)	#52.8	#171.4		15.9	48.4	13.5		26.4	31.6	82.8	31.6	
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0		175.0			30.0			
Base Capacity (vph)	350	1949		236	1856	698		805	795	581	845	
Starvation Cap Reductn	0	0		0	0	0		0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0		0	0	0	0	
Storage Cap Reductn	0	0		0	0	0		0	0	0	0	
Reduced v/c Ratio	0.70	0.97		0.36	0.41	0.27		0.17	0.36	0.63	0.32	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 83.	.2											
Natural Cycle: 95												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.97												
Intersection Signal Delay: 3					ntersection							
Intersection Capacity Utiliza	ation 85.7%			IC	CU Level o	of Service	E					
Analysis Period (min) 15	., .											
~ Volume exceeds capac			ally infinit	e.								
Queue shown is maximi					~							
# 95th percentile volume			eue may l	be longei	·.							
Queue shown is maximi	um after two	o cycles.										
Splits and Phases: 10: R	ange Road	& Two Mil	e Hill Roz	ad								
				~ 4								

√ Ø1		↓ Ø4
11 s	35 s	44 s
▶ Ø5	∲ Ø6	1 08
9 s	37 s	44 s

HCM Unsignalized Intersection Capacity Analysis 11: Alaska Highway & Sumanik Dr

	≯	*	•	1	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		† †	∱ ⊅		
Traffic Volume (veh/h)	0	111	0	580	539	60	
Future Volume (Veh/h)	0	111	0	580	539	60	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	121	0	630	586	65	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		7
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	934	326	651				
vC1, stage 1 conf vol							7
vC2, stage 2 conf vol							
vCu, unblocked vol	934	326	651				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	82	100				
cM capacity (veh/h)	265	670	931	1		-	
				00.4	00.0		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	121	315	315	391	260		
Volume Left	0	0	0	0	0		
Volume Right	121	0	0	0	65		
cSH	670	1700	1700	1700	1700		
Volume to Capacity	0.18	0.19	0.19	0.23	0.15		
Queue Length 95th (m)	5.0	0.0	0.0	0.0	0.0		
Control Delay (s)	11.6	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.6	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			1.0				
Intersection Capacity Utilization	n		30.4%	IC	U Level o	f Service	
Analysis Period (min)			15				

Intersection									
Intersection Delay, s/veh	11.6								
Intersection LOS	В								
Approach		EB		WB		NB		SB	
Entry Lanes		1		1		2		2	
Conflicting Circle Lanes		1		1		1		1	
Adj Approach Flow, veh/h		97		84		556		1102	
Demand Flow Rate, veh/h		99		85		568		1124	
Vehicles Circulating, veh/h		1063		633		155		27	
Vehicles Exiting, veh/h		88		89		1007		691	
Ped Vol Crossing Leg, #/h		0		0		0		0	
Ped Cap Adj		1.000		1.000		1.000		1.000	
Approach Delay, s/veh		11.0		6.3		7.7		14.0	
Approach LOS		В		А		А		В	
Lane	Left		Left		Left	Right	Left	Right	
Designated Moves	LTR		LTR		L	TR	L	TR	
Assumed Moves	LTR		LTR		L	TR	L	TR	
RT Channelized									
Lane Util	1.000		1.000		0.007	0.993	0.054	0.946	
Follow-Up Headway, s	2.609		2.609		2.535	2.535	2.535	2.535	
Critical Headway, s	4.976		4.976		4.544	4.544	4.544	4.544	
Entry Flow, veh/h	99		85		4	564	61	1063	
Cap Entry Lane, veh/h	467		724		1233	1233	1386	1386	
Entry HV Adj Factor	0.980		0.988		1.000	0.980	0.984	0.980	
Flow Entry, veh/h	97		84		4	552	60	1042	
Cap Entry, veh/h	457		715		1233	1208	1363	1358	
V/C Ratio	0.212		0.117		0.003	0.457	0.044	0.767	
Control Delay, s/veh	11.0		6.3		2.9	7.8	3.0	14.6	
LOS	В		A		А	А	А	В	
95th %tile Queue, veh	1		0		0	2	0	8	

HCM Unsignalized Intersection Capacity Analysis 2: Internal Rd (CGC Access Extension) & Internal Rd (McIntyre Dr Extension)

	۶	→	*	4	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			4			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	24	30	26	0	43	0	34	0	0	0	29	0
Future Volume (vph)	24	30	26	0	43	0	34	0	0	0	29	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	26	33	28	0	47	0	37	0	0	0	32	0
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	87	47	37	32								
Volume Left (vph)	26	0	37	0								
Volume Right (vph)	28	0	0	0								
Hadj (s)	-0.10	0.03	0.23	0.03								
Departure Headway (s)	4.0	4.2	4.5	4.3								
Degree Utilization, x	0.10	0.05	0.05	0.04								
Capacity (veh/h)	877	841	775	814								
Control Delay (s)	7.4	7.4	7.7	7.4								
Approach Delay (s)	7.4	7.4	7.7	7.4								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			7.5									
Level of Service			А									
Intersection Capacity Utiliza	ation		26.4%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 3: Internal Rd (McIntyre Dr Extension) & Internal Rd (Range Rd Extenstion)

	-	\mathbf{r}	4	←	1	۲	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4			र्भ	Y		
Traffic Volume (veh/h)	92	0	79	195	0	49	
Future Volume (Veh/h)	92	0	79	195	0	49	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	100	0	86	212	0	53	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)				356			
pX, platoon unblocked							
vC, conflicting volume			100		484	100	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			100		484	100	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			94		100	94	
cM capacity (veh/h)			1493	,	511	956	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	100						
		298	53				
Volume Left	0	86	0				
Volume Right	0	0	53		-		
cSH Valuma ta Canacitu	1700	1493	956				
Volume to Capacity	0.06	0.06	0.06				
Queue Length 95th (m)	0.0	1.4	1.3				
Control Delay (s)	0.0	2.5	9.0				
Lane LOS		A	A				
Approach Delay (s)	0.0	2.5	9.0				
Approach LOS			А				
Intersection Summary							
Average Delay			2.7				
Intersection Capacity Utiliza	tion		31.3%	IC	U Level o	f Service	
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 4: Valleyview Dr & Sumanik Drive/Sumanik Dr

	٦	→	\mathbf{r}	4	-	*	1	t	1	\$	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	51	26	5	63	35	50	41	0	6	25	0	18
Future Volume (vph)	51	26	5	63	35	50	41	0	6	25	0	18
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	55	28	5	68	38	54	45	0	7	27	0	20
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	88	160	52	47								
Volume Left (vph)	55	68	45	27								
Volume Right (vph)	5	54	7	20								
Hadj (s)	0.12	-0.08	0.13	-0.11								
Departure Headway (s)	4.4	4.1	4.6	4.4								
Degree Utilization, x	0.11	0.18	0.07	0.06								
Capacity (veh/h)	786	844	729	759								
Control Delay (s)	8.0	8.1	8.0	7.7								
Approach Delay (s)	8.0	8.1	8.0	7.7								
Approach LOS	А	А	А	А								
Intersection Summary												
Delay			8.0									
Level of Service			А									
Intersection Capacity Utiliza	tion		19.5%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

Intersection							
Intersection Delay, s/veh	3.4						
Intersection LOS	А						
Approach		EB		WB	NE	}	SB
Entry Lanes		1		1	1		1
Conflicting Circle Lanes		1		1	1		1
Adj Approach Flow, veh/h		109		96	61		55
Demand Flow Rate, veh/h		111		98	62)	56
Vehicles Circulating, veh/h		56		72	102		69
Vehicles Exiting, veh/h		69		92	65		101
Ped Vol Crossing Leg, #/h		0		0	(0
Ped Cap Adj		1.000		1.000	1.000		1.000
Approach Delay, s/veh		3.5		3.5	3.3	5	3.2
Approach LOS		А		А	A		А
Lane	Left		Left		Left	Left	
Designated Moves	LTR		LTR		LTR	LTR	
Assumed Moves	LTR		LTR		LTR	LTR	
RT Channelized							
Lane Util	1.000		1.000		1.000	1.000	
Follow-Up Headway, s	2.609		2.609		2.609	2.609	
Critical Headway, s	4.976		4.976		4.976	4.976	
Entry Flow, veh/h	111		98		62	56	
Cap Entry Lane, veh/h	1303		1282		1244	1286	
Entry HV Adj Factor	0.979		0.980		0.988	0.988	
Flow Entry, veh/h	109		96		61	55	
Cap Entry, veh/h	1276		1256		1229	1271	
V/C Ratio	0.085		0.076		0.050	0.044	
Control Delay, s/veh	3.5		3.5		3.3	3.2	
LOS	А		A		А	А	
95th %tile Queue, veh	0		0		0	0	

 \bigcirc

Lanes, Volumes, Timings <u>6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)</u>

Jane Group EBL EBL EBT EBR WBL WBT WBR NBT NBT NBR SBL SBT SBR Lane Configurations 1 2 3 79 5 2 134 37 598 6 100 1128 72 Fulure Volume (vph) 42 3 79 5 2 134 37 598 6 100 1128 72 Grade (%) 0% 0% 00% 000 190 190 190 190 190 190 100 100		۶	+	*	*	ł	•	•	1	1	1	ţ	~
Traffic Volume (vph) 42 3 79 5 2 134 37 598 6 100 1128 72 Future Volume (vph) 42 3 73 5 2 134 37 598 6 100 1128 72 Grade (%) 0% 0	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 42 3 79 5 2 134 37 598 6 100 1128 72 Future Volume (vph) 42 3 73 5 2 134 37 598 6 100 1128 72 Grade (%) 0% 0	Lane Configurations	5	î,			4		5	≜t ≽			-tî†	1
ideal Flow (php) 1900		42		79	5		134	37		6	100		
Ideal Flow (php) 1900	Future Volume (vph)	42	3	79	5	2	134	37	598	6	100	1128	72
Lane Width (m) 3.7	(,,,)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%) 0% 0% 0% 0% 0% 0% Storage Length (m) 0.0	(, , , ,	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Storage Lanes 1 0 0 2 0 0 2 Taper Length (m) 7.5 7.5 7.5 7.5 7.5 7.5 Lane Util, Factor 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.95 1.00 Ped Bike Factor 1 0.855 0.871 0.998 0.996 0.996 0.850 0.871 0.850 0.871 0.850 0.871 0.856 1.00 1.01 1.00 1.00 1.00 0.998 0.996 0.996 0.850 1.00 1.831 0.850 0.850 0.850 0.850 1.01 0.851 1.01 0.851 1.01 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 1.01 0.851 1.01 0.851 1.01 1.031 2.831 1.01 1.031 2.839 321.6 5 1.01 1.026 1.01 1.026 1.01 1.026 1.026 <t< td=""><td>()</td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td></t<>	()		0%			0%			0%			0%	
Storage Lanes 1 0 0 0 2 0 0 2 Taper Length (m) 7.5 7.5 7.5 7.5 7.5 7.5 Lane Util, Factor 1.00 1.00 1.00 1.00 1.00 0.996 0.950 0.95 0.95 0.950 0.0855 Ft Protected 0.950 0.996 0.998 0.996 0.098 0.0966 Satd. Flow (prot) 1789 1610 0 1637 0 1789 3571 0 0 3564 1601 Right Tum on Red Yes Yes <td< td=""><td>()</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td>100.0</td><td></td><td>0.0</td><td>0.0</td><td></td><td>80.0</td></td<>	()	0.0		0.0	0.0		0.0	100.0		0.0	0.0		80.0
Lame Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.95 1.00 Ped Bike Factor 0.950 0.956 0.998 0.956 0.996 0.966 0.956 0.956 0.956 0.956 0.956 1.00 1.00 1.00 1.00 0.976 0.996 0.956 1.610 0 1.637 0.992 0.161 0.857 0.850 0.851 0.851 1.611 0.851 0.	Storage Lanes	1		0	0		0	2		0	0		2
Lane Uhi, Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.95 1.00 Ped Bike Factor 0.950 0.956 0.998 0.998 0.996 0.996 0.996 0.956 0.996 0.956 0.996 0.956 0.996 0.956 0.996 0.956 1601 0 0.857 0.996 0.956 0.996 0.850 0.996 0.850 0.996 0.850 0.996 0.850 0.996 1601 0 0.852 0.925 0.161 0 0.856 1601 0 0.852 1601 0.850 0.850 1601 0.850 1601 0 0.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 10.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	Taper Length (m)	7.5			7.5			7.5			7.5		
Frt 0.855 0.871 0.998 0.960 0.996 FIL Protected 0.950 0.998 0.950 0.996 0.996 Satd. Flow (port) 1789 1610 0 1637 0 7389 3571 0 0 0.856 Satd. Flow (perm) 1106 1610 0 1627 0 303 3571 0 0 2924 1601 Satd. Flow (perm) 1106 1610 0 1627 0 303 3571 0 0 2924 1601 Satd. Flow (RTOR) 25 146 1 78 1 78 Link Distance (m) 3103 283 321.6 541.6 552.6 560 50.7		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	0.95	1.00
Fit Protected 0.950 0.998 0.966 0.996 0.996 Satel. Flow (prot) 1789 1610 0 0 1637 0 1789 3571 0 0 3364 1601 Fit Permitted 0.587 0.992 0.161 0.817 0 0 2924 1601 Right Turn on Red Yes	Ped Bike Factor												
Satd. Flow (prot) 1789 1610 0 1637 0 1789 3571 0 0 3564 1601 FI Permitted 0.587 0.992 0.161 0.817 0.817 0.817 0.817 Satd. Flow (perm) 1106 1610 0 1627 0 303 3571 0 0 2924 1601 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 25 146 1 78 1 78 1 78 Link Speed (kh) 50 50 60 60 60 1 1 78 Confl. Peds. (#hr) 0 2.23 2.04 19.3 32.5 100% <	Frt		0.855			0.871			0.998				0.850
Fit Permitted 0.587 0.992 0.161 0.817 Satd. Flow (perm) 1106 1610 0 0 1627 0 303 3571 0 0 224 1601 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 25 146 1 78 116 541.6 78 Link Speed (k/h) 50 20.4 193 322.5 544.6 544.6 78 Confl. Bikes (#hr) 22.3 20.92 0.92	FIt Protected	0.950				0.998		0.950				0.996	
Satd. Flow (perm) 1106 1610 0 1627 0 303 3571 0 0 2924 1601 Right Turn on Red Yes Yes<	Satd. Flow (prot)	1789	1610	0	0	1637	0	1789	3571	0	0	3564	1601
Right Turn on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 25 146 1 78 Link Speed (k/h) 50 50 60 60 60 Link Distance (m) 310.3 283.9 321.6 541.6 541.6 Travel Time (s) 22.3 20.4 19.3 32.5 50.7 Confl. Bikes (#hr) 0.92 0	Flt Permitted	0.587				0.992		0.161				0.817	
Satd. Flow (RTOR) 25 146 1 78 Link Speed (k/h) 50 50 60 60 Link Distance (m) 310.3 283.9 321.6 541.6 Travel Time (s) 22.3 20.4 19.3 32.5 Confl. Peds. (#hr) - - - - - Peak Hour Factor 0.92	Satd. Flow (perm)	1106	1610	0	0	1627	0	303	3571	0	0	2924	1601
Link Speed (k/h) 50 50 60 60 Link Distance (m) 310.3 283.9 321.6 541.6 Travel Time (s) 22.3 20.4 19.3 32.5 Confl. Peds. (#hr) 20.92 0.92	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (m) 310.3 283.9 321.6 541.6 Travel Time (s) 22.3 20.4 19.3 32.5 Confl. Bicks (#hr) 2 0.92	Satd. Flow (RTOR)		25			146			1				78
Travel Time (s) 22.3 20.4 19.3 32.5 Confl. Bikes (#/hr) Confl. Bikes (#/hr) 32.5 32.5 Peak Hour Factor 0.92	Link Speed (k/h)		50			50		_	60			60	
Confl. Peds. (#/hr) Peak Hour Factor 0.92	Link Distance (m)		310.3			283.9			321.6			541.6	
Confl. Bikes (#/hr) Peak Hour Factor 0.92 <	Travel Time (s)		22.3			20.4			19.3			32.5	
Peak Hour Factor 0.92	Confl. Peds. (#/hr)												
Growth Factor 100% 00% <t< td=""><td>Confl. Bikes (#/hr)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Confl. Bikes (#/hr)												
Heavy Vehicles (%) 2% 2	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Bus Blockages (#/hr) 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Parking (#hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 46 3 86 5 2 146 40 650 7 109 1226 78 Shared Lane Traffic (%) 7 0 0 1335 78 Turn Type Perm NA NA NA NA NA NA NA NA	Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 46 3 86 5 2 146 40 650 7 109 1226 78 Shared Lane Traffic (%) 46 89 0 0 153 0 40 657 0 0 1335 78 Tum Type Perm NA Size Size Size <td>Bus Blockages (#/hr)</td> <td>0</td>	Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 46 3 86 5 2 146 40 650 7 109 1226 78 Shared Lane Traffic (%) 46 89 0 0 153 0 40 657 0 0 1335 78 Turn Type Perm NA NA NA NA	Parking (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph) 46 89 0 0 153 0 40 657 0 0 1335 78 Turn Type Perm NA Na Na Na Sa Sa Sa </td <td></td>													
Lane Group Flow (vph) 46 89 0 0 153 0 40 657 0 0 1335 78 Turn Type Perm NA Perm <		46	3	86	5	2	146	40	650	7	109	1226	78
Turn Type Perm NA Perm													
Protected Phases 4 8 2 6 Permitted Phases 4 8 2 6 6 Detector Phase 4 4 8 2 2 6 6 Switch Phase	Lane Group Flow (vph)	46		0	0		0	40		0	0	1335	78
Permitted Phases 4 8 2 6 6 Detector Phase 4 4 8 8 2 2 6 6 6 Switch Phase		Perm			Perm			Perm			Perm		Perm
Detector Phase 4 4 8 8 2 2 6 6 6 Switch Phase Minimum Initial (s) 7.0 7.0 5.0 5.0 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 7.0 7.0 5.0 5.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 46.8 46.8 22.5 22.5 36.2 36.5 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% <	Protected Phases		4			8			2			6	
Switch Phase Minimum Initial (s) 7.0 7.0 5.0 5.0 10.0 10.0 10.0 10.0 Minimum Split (s) 46.8 46.8 22.5 22.5 36.2 36.5 50.5% 50.													
Minimum Initial (s) 7.0 7.0 5.0 5.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 46.8 46.8 22.5 22.5 36.2 36.5 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5% 50.5%<	Detector Phase	4	4		8	8		2	2		6	6	6
Minimum Split (s) 46.8 46.8 22.5 22.5 36.2 36.5 <td></td>													
Total Split (s) 47.0 47.0 47.0 47.0 48.0 40.0 10.0 10.0	Minimum Initial (s)					5.0							
Total Split (%) 49.5% 49.5% 49.5% 50.5%											36.2		
Yellow Time (s) 3.3 3.3 3.5 3.5 3.7	Total Split (s)		47.0		47.0	47.0		48.0	48.0		48.0		48.0
All-Red Time (s) 2.5 2.5 1.0 1.0 2.5 2.5 2.5 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.8 5.8 4.5 6.2 6.2 6.2 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode None None None Min Min Min Min													
Lost Time Adjust (s) 0.0													
Total Lost Time (s)5.85.84.56.26.26.26.26.2Lead/LagLead-Lag Optimize?Recall ModeNoneNoneNoneMinMinMinMin	()				1.0						2.5		
Lead/Lag Lead-Lag Optimize? Recall Mode None None None Min Min Min Min Min	Lost Time Adjust (s)												
Lead-Lag Optimize? Recall Mode None None None Min Min Min Min Min Min	. ,	5.8	5.8			4.5		6.2	6.2			6.2	6.2
Recall Mode None None None Min Min Min Min Min Min													
					None						Min		Min
Act Eπct Green (s)13.013.014.345.945.945.945.9	Act Effct Green (s)	13.0	13.0			14.3		45.9	45.9			45.9	45.9

VSMP TIA 2040 Total Conditions PM Peak Hour CQ

Lanes, Volumes, Timings 6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)

	≯	+	\mathbf{F}	4	+	•	•	Ť	*	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.18	0.18			0.20		0.64	0.64			0.64	0.64
v/c Ratio	0.23	0.28			0.35		0.21	0.29			0.71	0.07
Control Delay	23.9	18.3			6.2		13.7	8.2			14.7	3.3
Queue Delay	0.0	0.0			0.0		0.0	0.0			0.0	0.0
Total Delay	23.9	18.3			6.2		13.7	8.2			14.7	3.3
LOS	С	В			А		В	А			В	А
Approach Delay		20.2			6.2			8.5			14.0	
Approach LOS		С			А			А			В	
Queue Length 50th (m)	4.9	6.7			0.7		1.4	12.3			37.7	0.0
Queue Length 95th (m)	11.6	15.7			10.9		13.5	56.0			#179.7	7.6
Internal Link Dist (m)		286.3			259.9			297.6			517.6	
Turn Bay Length (m)							100.0					80.0
Base Capacity (vph)	659	969			1056		195	2301			1884	1059
Starvation Cap Reductn	0	0			0		0	0			0	0
Spillback Cap Reductn	0	0			0		0	0			0	0
Storage Cap Reductn	0	0			0		0	0			0	0
Reduced v/c Ratio	0.07	0.09			0.14		0.21	0.29			0.71	0.07
Intersection Summary												

Intersection Summary

Area Type: Cycle Length: 95

Actuated Cycle Length: 71.2

Natural Cycle: 105 Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.71

Intersection Signal Delay: 12.3 Intersection Capacity Utilization 84.2%

Analysis Period (min) 15

Intersection LOS: B ICU Level of Service E

95th percentile volume exceeds capacity, queue may be longer.

Other

Queue shown is maximum after two cycles.

Splits and Phases: 6: Hamilton Boulevard & CGC Multiplex/Internal Rd (CGC Access Extension)

↑ _{Ø2}		_{Ø4}
48 s		47 s
\$ Ø6		✓ Ø8
48 s		47 s

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	≯	+	*	•	ł	•	•	Ť	1	*	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	र्स	1		4		ሻ	∱1 ≽		5	∱1 }-	
Traffic Volume (vph)	20	4	14	7	0	26	11	512	31	52	827	34
Future Volume (vph)	20	4	14	7	0	26	11	512	31	52	827	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	0.1	0%	0.1	0.1	0%	0.17	0.1	0%	0.1	0.1	0%	0.1
Storage Length (m)	50.0	070	20.0	0.0	0,0	0.0	90.0	0,0	0.0	80.0	0,0	50.0
Storage Lanes	1		1	0.0		0.0	1		0.0	1		0.00
Taper Length (m)	7.5		•	7.5		•	7.5		Ū	7.5		U
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	0.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Frt			0.850		0.895			0.991			0.994	
Flt Protected	0.950	0.967	0.000		0.989		0.950	0.551		0.950	0.334	
Satd. Flow (prot)	1700	1730	1601	0	1667	0		3546	0	1789	3557	0
Flt Permitted	1700	1750	1001	0	0.940	0	0.305	5540	U	0.429	3337	0
	1700	1700	1601	٥		0		3546	0	0.429 808	2557	0
Satd. Flow (perm)	1789	1789	1601	0	1585		574	3540		808	3557	0
Right Turn on Red			Yes		25	Yes		0	Yes		-	Yes
Satd. Flow (RTOR)		50	35		35			8			5	
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		630.9			204.4			391.2			321.6	
Travel Time (s)		45.4			14.7			23.5			19.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	22	4	15	8	0	28	12	557	34	57	899	37
Shared Lane Traffic (%)	41%											
Lane Group Flow (vph)	13	13	15	0	36	0	12	591	0	57	936	0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8		8	4			6			2		
Detector Phase	8	8	8	4	4		6	6		2	2	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	47.8	47.8	47.8	47.8	47.8		35.7	35.7		35.7	35.7	
Total Split (s)	48.0	48.0	48.0	48.0	48.0		37.0	37.0		37.0	37.0	
Total Split (%)	56.5%	56.5%	56.5%	56.5%	56.5%		43.5%	43.5%		43.5%	43.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	3.5	3.5	3.5	3.5	3.5		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.8		6.8		5.7	5.7		5.7	5.7	
Lead/Lag	0.0	0.0	0.0		0.0		5.1	J.1		J.1	J.1	
Lead-Lag Optimize?	More	Mone	Maria	Ness	Mene		Min	N 41-		Min	Min	
Recall Mode	None	None	None	None	None		Min	Min		Min	Min	
Act Effct Green (s)	7.4	7.4	7.4		7.4		32.0	32.0		32.0	32.0	

VSMP TIA 2040 Total Conditions PM Peak Hour CQ

Lanes, Volumes, Timings 7: Hamilton Boulevard & Sumanik Drive

	∕	-	\mathbf{r}	1	-	•	1	Ť	1	\$	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.19	0.19	0.19		0.19		0.82	0.82		0.82	0.82	
v/c Ratio	0.04	0.04	0.04		0.11		0.03	0.20		0.09	0.32	
Control Delay	16.3	16.3	3.9		8.7		4.2	3.2		4.1	3.6	
Queue Delay	0.0	0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay	16.3	16.3	3.9		8.7		4.2	3.2		4.1	3.6	
LOS	В	В	А		А		А	А		А	А	
Approach Delay		11.8			8.7			3.2			3.7	
Approach LOS		В			А			А			А	
Queue Length 50th (m)	0.7	0.7	0.0		0.1		0.0	0.0		0.0	0.0	
Queue Length 95th (m)	4.7	4.7	2.1		5.8		1.9	17.5		5.5	30.1	
Internal Link Dist (m)		606.9			180.4			367.2			297.6	
Turn Bay Length (m)	50.0		20.0				90.0			80.0		
Base Capacity (vph)	1716	1716	1537		1522		476	2943		670	2952	
Starvation Cap Reductn	0	0	0		0		0	0		0	0	
Spillback Cap Reductn	0	0	0		0		0	0		0	0	
Storage Cap Reductn	0	0	0		0		0	0		0	0	
Reduced v/c Ratio	0.01	0.01	0.01		0.02		0.03	0.20		0.09	0.32	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 38	.8											
Natural Cycle: 85												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 0.32												
Intersection Signal Delay:					tersectior		_					
Intersection Capacity Utiliz	ation 55.9%			IC	CU Level o	of Service	В					
Analysis Period (min) 15												

Splits and Phases: 7: Hamilton Boulevard & Sumanik Drive

	٦	-	*	4	+	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜ †⊅		ካካ	^	1	<u></u>	^	1	ካካ	<u>†</u> †	1
Traffic Volume (vph)	154	567	8	497	1044	742	12	212	321	395	179	183
Future Volume (vph)	154	567	8	497	1044	742	12	212	321	395	179	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•		0%			0%		•	0%	
Storage Length (m)	120.0		0.0	0.0	- / -	110.0	125.0	- / -	110.0	260.0	- / -	110.0
Storage Lanes	1		0	2		1	1		1	2		1
Taper Length (m)	7.5		-	7.5			7.5			7.5		
Lane Util. Factor	1.00	0.95	0.95	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Ped Bike Factor			0.00		0.00						0.00	
Frt		0.998				0.850			0.850			0.850
Flt Protected	0.950	0.000		0.950		0.000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	1789	3571	0	3471	3579	1601	1789	3579	1601	3471	3579	1601
Flt Permitted	0.146	0071	Ū	0.950	0010	1001	0.629	0010	1001	0.950	0010	1001
Satd. Flow (perm)	275	3571	0	3471	3579	1601	1185	3579	1601	3471	3579	1601
Right Turn on Red	210	0071	Yes	0471	0010	Yes	1100	0010	Yes	0471	0070	Yes
Satd. Flow (RTOR)		1	103			695			349			199
Link Speed (k/h)		60			60	035		60	040		60	100
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	
Confl. Peds. (#/hr)		JZ.J			15.5			41.7			40.5	
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	2 /0	2 /0	2 /0	2 /0	2 /0	2 /0	2 /0	2 /0	2 /0	2 /0	2 /0	2 /0
Parking (#/hr)	0	U	0	0	U	0	0	0	0	0	0	0
Mid-Block Traffic (%)		0%			0%			0%			0%	
	167	616	9	540	1135	807	13	230	349	429	195	199
Adj. Flow (vph) Shared Lane Traffic (%)	107	010	9	040	1155	007	13	230	549	429	195	199
	167	625	0	540	1135	807	13	230	349	429	195	199
Lane Group Flow (vph)			U			Perm						
Turn Type	pm+pt	NA		Prot	NA	Penn	pm+pt	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4	4	1	6	c	5	2	0
Permitted Phases	8	8		7	4	4	6	6	6	F	0	2 2
Detector Phase	3	8		7	4	4	1	6	6	5	2	Z
Switch Phase	5.0	05.0		F 0	05.0	05.0	F 0	0.0	0.0	F 0	0.0	0.0
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	9.0	9.0	5.0	9.0	9.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2	57.2	9.0	57.2	57.2
Total Split (s)	45.0	55.0		45.0	55.0	55.0	9.0	15.0	15.0	35.0	41.0	41.0
Total Split (%)	30.0%	36.7%		30.0%	36.7%	36.7%	6.0%	10.0%	10.0%	23.3%	27.3%	27.3%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7	3.7	3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.7		2.5	6.7	6.7	4.0	7.2	7.2	4.0	7.2	7.2
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Min		None	Min	Min	None	Min	Min	None	Min	Min
Act Effct Green (s)	57.5	40.6		27.9	52.9	52.9	22.4	13.7	13.7	20.0	34.8	34.8

VSMP TIA 2040 Total Conditions PM Peak Hour CQ

≯	-	\rightarrow	- 🗲	-	•	1	†	1	×	↓ I	-
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
0.46	0.33		0.23	0.43	0.43	0.18	0.11	0.11	0.16	0.28	0.28
0.56	0.53		0.69	0.74	0.75	0.05	0.58	0.72	0.77	0.19	0.34
27.1	39.8		51.1	36.6	10.8	30.1	58.1	13.9	61.9	34.5	6.1
0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27.1	39.8		51.1	36.6	10.8	30.1	58.1	13.9	61.9	34.5	6.1
С	D		D	D	В	С	E	В	E	С	Α
	37.2			31.4			31.4			41.9	
	D			С			С			D	
13.8	55.8		53.9	101.5	14.0	1.9	26.1	0.0	45.2	16.7	0.0
55.7	138.6		121.2	#276.0	108.8	7.4	50.1	27.4	102.8	34.9	17.2
	517.6			201.0			671.8			780.3	
120.0					110.0	125.0		110.0	260.0		110.0
694	1475		1261	1529	1082	240	396	487	920	1191	665
0	0		0	0	4	0	0	0	0	0	0
0	0		0	0	0	0	0	0	0	0	0
0	0		0	0	0	0	0	0	0	0	0
0.24	0.42		0.43	0.74	0.75	0.05	0.58	0.72	0.47	0.16	0.30
er											
dinated											
			li	ntersection	LOS: C						
	EBL 0.46 0.56 27.1 0.0 27.1 C 13.8 55.7 120.0 694 0 0 0 0	EBL EBT 0.46 0.33 0.56 0.53 27.1 39.8 0.0 0.0 27.1 39.8 C D 37.2 D 13.8 55.8 55.7 138.6 517.6 120.0 694 1475 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42	EBL EBT EBR 0.46 0.33 0.56 0.53 27.1 39.8 0.0 0.0 27.1 39.8 0.0 0.0 27.1 39.8 0.0 0.0 27.1 39.8 0.0 0.0 27.1 39.8 0.0 0.0 27.1 39.8 0.0 0.0 27.1 39.8 0.0 0.0 27.1 39.8 0.0 0.1 13.8 55.8 55.7 138.6 55.7 138.6 517.6 120.0 694 1475 0 0 0 0 0 0 0 0 0 0 0.24 0.42	EBL EBT EBR WBL 0.46 0.33 0.23 0.56 0.53 0.69 27.1 39.8 51.1 0.0 0.0 0.0 27.1 39.8 51.1 0.0 0.0 0.0 27.1 39.8 51.1 0.0 0.0 0.0 27.1 39.8 51.1 C D D 37.2 D 13.8 55.7 138.6 121.2 517.6 1261 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT 0.46 0.33 0.23 0.43 0.56 0.53 0.69 0.74 27.1 39.8 51.1 36.6 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 C D D D 37.2 31.4 D C 13.8 55.8 53.9 101.5 55.7 138.6 121.2 #276.0 517.6 201.0 120.0 0 0 694 1475 1261 1529 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0.43	EBL EBT EBR WBL WBT WBR 0.46 0.33 0.23 0.43 0.43 0.56 0.53 0.69 0.74 0.75 27.1 39.8 51.1 36.6 10.8 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 0.0 0.0 D D B 37.2 31.4 D C 13.8 55.8 53.9 101.5 14.0 55.7 138.6 121.2 #276.0 108.8 517.6 201.0 110.0 694 1475 1261 1529 1082 0 0 0 0 0 0 0 0 0.24 0.42 0.43 0.74 0.75 0.75 <td>EBL EBT EBR WBL WBT WBR NBL 0.46 0.33 0.23 0.43 0.43 0.18 0.56 0.53 0.69 0.74 0.75 0.05 27.1 39.8 51.1 36.6 10.8 30.1 0.0 0.0 0.0 0.0 0.0 20.0 27.1 39.8 51.1 36.6 10.8 30.1 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 C D D B C 37.2 31.4 D C C 13.8 55.8 53.9 101.5 14.0 1.9 55.7 138.6 121.2 #276.0 108.8 7.4 517.6 201.0 110.0 125.0 0 0 0 0 0 0 0 0 0 0 0</td> <td>EBL EBT EBR WBL WBT WBR NBL NBT 0.46 0.33 0.23 0.43 0.43 0.18 0.11 0.56 0.53 0.69 0.74 0.75 0.05 0.58 27.1 39.8 51.1 36.6 10.8 30.1 58.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 58.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 58.1 C D D B C E 37.2 31.4 31.4 D C C C C 14.0 1.9 26.1 55.7 138.6 121.2 #276.0 108.8 7.4 50.1 517.6 1261 1529 1082</td> <td>EBL EBT EBR WBL WBT WBR NBL NBT NBR 0.46 0.33 0.23 0.43 0.43 0.18 0.11 0.11 0.56 0.53 0.69 0.74 0.75 0.05 0.58 0.72 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 C D D D B C E B 37.2 31.4 31.4 1.9 26.1 0.0 0 55.7 138.6 121.2 #276.0 108.8 7.4 50.1</td> <td>EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 0.46 0.33 0.23 0.43 0.43 0.18 0.11 0.11 0.16 0.56 0.53 0.69 0.74 0.75 0.05 0.58 0.72 0.77 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 61.9 0.0</td> <td>EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 0.46 0.33 0.23 0.43 0.43 0.18 0.11 0.11 0.16 0.28 0.56 0.53 0.69 0.74 0.75 0.05 0.58 0.72 0.77 0.19 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 61.9 34.5 0.0 0.72 0.74 10.28 34.9 517.6 27.4 102.8 34.9 517.6 216.1 10.0 260.0</td>	EBL EBT EBR WBL WBT WBR NBL 0.46 0.33 0.23 0.43 0.43 0.18 0.56 0.53 0.69 0.74 0.75 0.05 27.1 39.8 51.1 36.6 10.8 30.1 0.0 0.0 0.0 0.0 0.0 20.0 27.1 39.8 51.1 36.6 10.8 30.1 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 C D D B C 37.2 31.4 D C C 13.8 55.8 53.9 101.5 14.0 1.9 55.7 138.6 121.2 #276.0 108.8 7.4 517.6 201.0 110.0 125.0 0 0 0 0 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT WBR NBL NBT 0.46 0.33 0.23 0.43 0.43 0.18 0.11 0.56 0.53 0.69 0.74 0.75 0.05 0.58 27.1 39.8 51.1 36.6 10.8 30.1 58.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 58.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 58.1 C D D B C E 37.2 31.4 31.4 D C C C C 14.0 1.9 26.1 55.7 138.6 121.2 #276.0 108.8 7.4 50.1 517.6 1261 1529 1082	EBL EBT EBR WBL WBT WBR NBL NBT NBR 0.46 0.33 0.23 0.43 0.43 0.18 0.11 0.11 0.56 0.53 0.69 0.74 0.75 0.05 0.58 0.72 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 C D D D B C E B 37.2 31.4 31.4 1.9 26.1 0.0 0 55.7 138.6 121.2 #276.0 108.8 7.4 50.1	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 0.46 0.33 0.23 0.43 0.43 0.18 0.11 0.11 0.16 0.56 0.53 0.69 0.74 0.75 0.05 0.58 0.72 0.77 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 61.9 0.0	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 0.46 0.33 0.23 0.43 0.43 0.18 0.11 0.11 0.16 0.28 0.56 0.53 0.69 0.74 0.75 0.05 0.58 0.72 0.77 0.19 27.1 39.8 51.1 36.6 10.8 30.1 58.1 13.9 61.9 34.5 0.0 0.72 0.74 10.28 34.9 517.6 27.4 102.8 34.9 517.6 216.1 10.0 260.0

Intersection Capacity Utilization 76.9%

ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

▲ ø1 🕴 ø2		Ø3	4 ≏ Ø4
9s 41s		45 s	55 s
Ø5	1 06	€ Ø7	
35 s	15 s	45 s	55 s

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

Lane Group EBL EBT EBR WBL WBT WBR NBT NBT NBR SBL SBT SBR Lane Configurations		۶	→	\mathbf{F}	4	+	•	•	1	1	1	Ļ	~
Traffic Volume (vph) 171 27 88 98 32 20 153 412 173 13 493 176 Ideal Flow (vphp) 1900 100	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 171 27 88 98 32 20 153 412 173 13 493 176 Ideal Flow (vphp) 1900 100	Lane Configurations		4		۲	4Î			^	1	۲	† †	
ideal Flow (php) 1900 1000 1000 1000	Traffic Volume (vph)	171		88	98		20	153		173	13		176
Lane Width (m) 3.7	Future Volume (vph)	171	27	88	98	32	20	153	412	173	13	493	176
Grade (%) 0% 0% 0% 0% 0% 0% Storage Length (m) 0.0 0.0 0.0 0.0 175.0 130.0 0.0 Taper Length (m) 7.5	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m) 0.0 0.0 0.0 0.0 175.0 130.0 0.0 Storage Lanes 0 0 1 0 0 1 1 0 Storage Lanes 0 0 1.00 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.950 0.967 0.950 0.967 0.950 0.950 0.967 0.950 <t< td=""><td>Lane Width (m)</td><td>3.7</td><td>3.7</td><td>3.7</td><td>3.7</td><td>3.7</td><td>3.7</td><td>3.7</td><td>3.7</td><td>3.7</td><td>3.7</td><td>3.7</td><td>3.7</td></t<>	Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Storage Langs 0 0 1 0 0 1 1 0 Taper Length (m) 7.5 7.5 7.5 7.5 7.5 7.5 7.5 Lane Util, Factor 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 0.95 0.95 Pel Bike Factor 0.951 0.952 0.950 0.967 0.950 0.950 0.950 Stdt. Flow (prot) 0 1752 0 1789 1774 0 0 3332 1601 1789 3439 0 Right Tum on Red 778 Yes Yes <td< td=""><td>Grade (%)</td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td><td></td><td>0%</td><td></td></td<>	Grade (%)		0%			0%			0%			0%	
Taper Length (m) 7.5 7.5 7.5 7.5 7.5 7.5 Lane Ulli, Factor 1.00 1.00 1.00 1.00 1.00 0.95 0.96 1.00 0.95 0.95 Ped Bike Factor 0.971 0.950 0.987 0.987 0.950 Stat, Flow (prot) 0 1752 0.7189 1774 0 0.332 1601 1789 3439 0 FH Permitted 0.784 0.598 0.650 0.950 950 950 950 Satd, Flow (prot) 0 1415 0 1126 1774 0 0.2326 1601 1789 3439 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 35 2.2 45.8 20.8 20.8 20.8 20.8 20.8 20.8 20.9 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	Storage Length (m)	0.0		0.0	0.0		0.0	0.0		175.0	130.0		0.0
Lame Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 1.00 0.95 0.95 Ped Bike Factor 0.957 0.950 0.985 0.950 0.985 0.950 0.985 FH Protected 0.971 0.950 0.985 0.950 0.950 0.950 Satd. Flow (perm) 0 1415 0 1126 1774 0 0 2325 1601 1789 3439 0 Satd. Flow (perm) 0 1415 0 1126 1774 0 0 2325 1601 1789 3439 0 Satd. Flow (perm) 0 1415 0 1126 1774 0 0 2325 1601 1789 3439 0 Tink Distance (m) 122.4 11411 889.8 404.2 1141 1004 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%<	Storage Lanes	0		0	1		0	0		1	1		0
Ped Bike Factor 0.958 0.942 0.850 0.961 Fit Protected 0.971 0.950 0.967 0.950 Satd. Flow (port) 0 1752 0 1789 1774 0 0 3532 1601 1789 3439 0 Fit Permitted 0.784 0.598 0.650 1601 1789 3439 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 35 22 188 71 10 1789 3439 0 Link Speed (kh) 50 50 70 70 10 11 11 899.8 404.2 11 Travel Time (s) 8.8 82.2 45.8 20.8 20.82 0.92	Taper Length (m)	7.5			7.5						7.5		
Frt 0.958 0.942 0.860 0.961 FIL Protected 0.971 0.950 0.987 0.980 0.980 Stat. Flow (prot) 0 1752 0.1789 1774 0 0.3532 1601 1789 3439 0 Stat. Flow (perm) 0 1415 0 1126 1774 0 0 2322 1601 1789 3439 0 Stat. Flow (perm) 0 1415 0 1126 1774 0 0 2326 1601 1789 3439 0 Stat. Flow (RTOR) 35 22 188 71 100 122.4 1141.1 889.8 404.2 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	0.95	0.95
Fit Protected 0.971 0.950 0.987 0.950 Satd. Flow (prot) 0 1752 0 1789 1774 0 0 332 1601 1789 3439 0 Right Turn on Red 0.784 0.598 0.650 0.950 Yes	Ped Bike Factor												
Satd. Flow (prot) 0 1752 0 1789 1774 0 0 3532 1601 1789 3439 0 FI Permitted 0.784 0.598 0.650 0.950 0.950 0.950 0.950 Satd. Flow (perm) 0 1415 0 1126 1774 0 0 2326 1601 1789 3439 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 35 22 188 71 1141 889.8 404.2 Link Distance (m) 122.4 1141.1 889.8 404.2 1141.1 889.8 404.2 Confl. Peds. (#hr) 0.92	Frt		0.958			0.942				0.850		0.961	
Fit Permitted 0.784 0.598 0.650 0.950 Satd. Flow (perm) 0 1415 0 1126 1774 0 0 2326 1601 1789 3439 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 35 22 188 71 11141 889.8 404.2 11141.1 Reserved (RTOR) 20.8 20.8 20.8 20.8 20.8 20.92 0.92 <td< td=""><td>Flt Protected</td><td></td><td>0.971</td><td></td><td>0.950</td><td></td><td></td><td></td><td>0.987</td><td></td><td>0.950</td><td></td><td></td></td<>	Flt Protected		0.971		0.950				0.987		0.950		
Satd. Flow (perm) 0 1415 0 1126 1774 0 0 2326 1601 1789 3439 0 Right Turn on Red Yes Yes </td <td>Satd. Flow (prot)</td> <td>0</td> <td>1752</td> <td>0</td> <td>1789</td> <td>1774</td> <td>0</td> <td>0</td> <td>3532</td> <td>1601</td> <td>1789</td> <td>3439</td> <td>0</td>	Satd. Flow (prot)	0	1752	0	1789	1774	0	0	3532	1601	1789	3439	0
Right Turn on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 35 22 188 71 Link Speed (k/h) 50 50 70 70 Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 8.8 82.2 45.8 20.8 Confl. Bikes (#hr)	Flt Permitted		0.784		0.598				0.650		0.950		
Satd. Flow (RTOR) 35 22 188 71 Link Speed (k/h) 50 50 70 70 Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 8.8 82.2 45.8 20.8 Confl. Peds. (#hr)	Satd. Flow (perm)	0	1415	0	1126	1774	0	0	2326	1601	1789	3439	0
Link Speed (kh) 50 50 70 70 Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 8.8 82.2 45.8 20.8 Confl. Peds. (#hr) 20.92 0.92	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 8.8 62.2 45.8 20.8 Confl. Bicks (#hr)	Satd. Flow (RTOR)		35			22				188		71	
Travel Time (s) 8.8 82.2 45.8 20.8 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Ventoes (#/hr) Ventoes (#/hr) Ventoes (#/hr) Peak Hour Factor 100%	Link Speed (k/h)		50			50			70			70	
Confl. Peds. (#/hr) Peak Hour Factor 0.92	Link Distance (m)		122.4			1141.1			889.8			404.2	
Confl. Bikes (#/hr) Peak Hour Factor 0.92	Travel Time (s)		8.8			82.2			45.8			20.8	
Peak Hour Factor 0.92	Confl. Peds. (#/hr)												
Growth Factor 100% 00%	Confl. Bikes (#/hr)												
Heavy Vehicles (%) 2% 2	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Bus Blockages (#/hr) 0	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Parking (#hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% Adj. Flow (vph) 186 29 96 107 35 22 166 448 188 14 536 191 Shared Lane Traffic (%) 0 311 0 107 57 0 0 614 188 14 727 0 Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 4 8 6 5 2 2 Detector Phase 4 4 8 6 6 5 2 Switch Phase		2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Mid-Block Traffic (%) 0% 0% 0% 0% 0% Adj. Flow (vph) 186 29 96 107 35 22 166 448 188 14 536 191 Shared Lane Traffic (%) 0 311 0 107 57 0 0 614 188 14 727 0 Turn Type Perm NA Sa Sa Sa		0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 186 29 96 107 35 22 166 448 188 14 536 191 Shared Lane Traffic (%) 0 311 0 107 57 0 0 614 188 14 727 0 Turn Type Perm NA NA Perm NA	Parking (#/hr)												
Shared Lane Traffic (%) 0 311 0 107 57 0 0 614 188 14 727 0 Turn Type Perm NA Perm Perm NA NA NA NA NA NA NA	Mid-Block Traffic (%)												
Lane Group Flow (vph) 0 311 0 107 57 0 0 614 188 14 727 0 Turn Type Perm NA Pa Perm Pa <t< td=""><td></td><td>186</td><td>29</td><td>96</td><td>107</td><td>35</td><td>22</td><td>166</td><td>448</td><td>188</td><td>14</td><td>536</td><td>191</td></t<>		186	29	96	107	35	22	166	448	188	14	536	191
Turn Type Perm NA Perm NA Perm NA Perm Protected Phases 4 8 6 5 2 Permitted Phases 4 4 8 8 6 6 5 2 Detector Phase 4 4 8 8 6 6 5 2 Switch Phase													
Protected Phases 4 8 6 5 2 Permitted Phases 4 8 6 6 6 6 7 <t< td=""><td>Lane Group Flow (vph)</td><td>0</td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>0</td></t<>	Lane Group Flow (vph)	0		0			0						0
Permitted Phases 4 8 6 6 6 Detector Phase 4 4 8 8 6 6 5 2 Switch Phase		Perm			Perm			Perm		Perm		NA	
Detector Phase 4 4 8 8 6 6 6 5 2 Switch Phase Minimum Initial (s) 7.0 7.0 5.0 20.0 <td< td=""><td>Protected Phases</td><td></td><td>4</td><td></td><td></td><td>8</td><td></td><td></td><td>6</td><td></td><td>5</td><td>2</td><td></td></td<>	Protected Phases		4			8			6		5	2	
Switch Phase Minimum Initial (s) 7.0 7.0 5.0 5.0 20.0 20.0 20.0 5.0 20.0 Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0													
Minimum Initial (s) 7.0 7.0 5.0 5.0 20.0 20.0 5.0 20.0 Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (s) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0		4	4		8	8		6	6	6	5	2	
Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (s) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lead Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Recall Mode None None None None Min Min Min													
Total Split (s) 45.0 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Recall Mode None None None Min Min Min Min	Minimum Initial (s)							20.0	20.0	20.0			
Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag	Minimum Split (s)												
Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lag Lead Recall Mode None None None Min Min Min Min	Total Split (s)												
All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lead Recall Mode None None None Min Min Min Min													
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None None None Min Min None Min	Yellow Time (s)		3.3		3.5	3.5		3.7	3.7	3.7	3.0		
Total Lost Time (s)6.34.54.55.75.74.05.7Lead/LagLagLagLagLagLagLeadLead-Lag Optimize?YesYesYesYesRecall ModeNoneNoneNoneMinMinMin		3.0						2.0					
Lead/LagLagLagLagLagLeadLead-Lag Optimize?YesYesYesYesRecall ModeNoneNoneNoneMinMinNoneMin	Lost Time Adjust (s)									0.0	0.0	0.0	
Lead-Lag Optimize? Yes Yes Yes Recall Mode None None None Min Min None Min	Total Lost Time (s)		6.3		4.5	4.5			5.7	5.7	4.0	5.7	
Recall Mode None None None Min Min Min None Min								-	•	•			
Act Effct Green (s) 15.9 17.8 17.8 22.8 22.8 6.0 24.2		None						Min					
	Act Effct Green (s)		15.9		17.8	17.8			22.8	22.8	6.0	24.2	

VSMP TIA 2040 Total Conditions PM Peak Hour CQ

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

	۶	-	\mathbf{F}	•	-	*	1	1	1	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio		0.30		0.34	0.34			0.43	0.43	0.11	0.46	
v/c Ratio		0.69		0.28	0.09			0.61	0.24	0.07	0.45	
Control Delay		23.3		15.6	9.3			17.5	3.7	27.3	10.3	
Queue Delay		0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay		23.3		15.6	9.3			17.5	3.7	27.3	10.3	
LOS		С		В	А			В	А	С	В	
Approach Delay		23.3			13.4			14.3			10.6	
Approach LOS		С			В			В			В	
Queue Length 50th (m)		20.6		6.6	2.0			19.6	0.0	1.1	19.0	
Queue Length 95th (m)		53.5		20.1	9.4			#65.4	12.1	6.8	42.8	
Internal Link Dist (m)		98.4			1117.1			865.8			380.2	
Turn Bay Length (m)									175.0	130.0		
Base Capacity (vph)		1091		902	1426			1118	867	212	2356	
Starvation Cap Reductn		0		0	0			0	0	0	0	
Spillback Cap Reductn		0		0	0			0	0	0	0	
Storage Cap Reductn		0		0	0			0	0	0	0	
Reduced v/c Ratio		0.29		0.12	0.04			0.55	0.22	0.07	0.31	
Intersection Summary												
31	Other											
Cycle Length: 85												
Actuated Cycle Length: 52.6												
Natural Cycle: 85												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.69												
Intersection Signal Delay: 14					ntersection							
Intersection Capacity Utilizat	ion 73.6%			IC	CU Level o	of Service	D					
Analysis Period (min) 15												
# 95th percentile volume e			eue may l	be longer	ſ.							
Queue shown is maximur	m after two	cycles.										
Colite and Dhasaay Or Ala	ka Lliabwa	v 9 Intern		nnan Dd	Tutonoion	\/Denge	Dood					

Splits and Phases: 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

↓ ø₂			A 04
40 s			45 s
Ø5	1 06		₩ Ø8
10 s	30 s		45 s

	٦	+	*	4	Ļ	•	•	1	*	×	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	<u>ተተ</u> ኈ		<u> </u>	<u></u>	1		र्स	1	<u> </u>	eî 👘	
Traffic Volume (vph)	148	943	11	145	1904	324	39	135	211	238	91	243
Future Volume (vph)	148	943	11	145	1904	324	39	135	211	238	91	243
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	140.0		0.0	75.0		175.0	0.0		30.0	0.0		50.0
Storage Lanes	1		0	1		1	0		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998				0.850			0.850		0.891	
Flt Protected	0.950			0.950				0.989		0.950		
Satd. Flow (prot)	1789	5132	0	1789	5142	1601	0	1863	1601	1789	1678	0
Flt Permitted	0.142			0.186				0.697		0.639		
Satd. Flow (perm)	267	5132	0	350	5142	1601	0	1313	1601	1204	1678	0
Right Turn on Red			Yes		-	Yes			Yes			Yes
Satd. Flow (RTOR)		2				352			178		166	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		225.0			1098.9			1141.1			1649.4	
Travel Time (s)		13.5			65.9			82.2			118.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	161	1025	12	158	2070	352	42	147	229	259	99	264
Shared Lane Traffic (%)												
Lane Group Flow (vph)	161	1037	0	158	2070	352	0	189	229	259	363	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		<u> </u>	6			8			4	
Permitted Phases	2			6		6	8		8	4		
Detector Phase	5	2		1	6	6	8	8	8	4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	9.0	31.2		9.5	31.2	31.2	14.8	14.8	14.8	43.8	43.8	
Total Split (s)	9.0	35.0		11.0	37.0	37.0	44.0	44.0	44.0	44.0	44.0	
Total Split (%)	10.0%	38.9%		12.2%	41.1%	41.1%	48.9%	48.9%	48.9%	48.9%	48.9%	
Yellow Time (s)	3.0	3.7		3.5	3.7	3.7	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	1.0	3.5		1.0	3.5	3.5	4.5	4.5	4.5	4.5	4.5	
Lost Time Adjust (s)	0.0	-1.0		0.0	0.0	0.0		0.0	0.0	-1.8	-1.3	
Total Lost Time (s)	4.0	6.2		4.5	7.2	7.2		7.8	7.8	6.0	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	Max		None	Max	Max	Min	Min	Min	Min	Min	
Act Effct Green (s)	36.4	29.1		39.4	30.1	30.1		23.7	23.7	25.6	25.1	
	00.1	20.1		00.7	50.1	00.1		20.1	20.1	20.0	20.1	

VSMP TIA 2040 Total Conditions PM Peak Hour CQ

	٦	-	\mathbf{r}	4	←	•	1	1	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.47	0.37		0.50	0.39	0.39		0.30	0.30	0.33	0.32	
v/c Ratio	0.73	0.54		0.53	1.04	0.42		0.47	0.38	0.66	0.56	
Control Delay	34.9	21.8		19.1	59.3	4.3		25.5	7.2	30.5	14.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay	34.9	21.8		19.1	59.3	4.3		25.5	7.2	30.5	14.2	
LOS	С	С		В	E	А		С	А	С	В	
Approach Delay		23.5			49.4			15.5			21.0	
Approach LOS		С			D			В			С	
Queue Length 50th (m)	11.1	43.0		11.1	~123.6	0.0		22.3	5.3	32.1	22.0	
Queue Length 95th (m)	#43.0	69.3		#28.2	#191.3	17.6		39.1	19.1	54.5	44.6	
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0		175.0			30.0			
Base Capacity (vph)	222	1913		297	1982	833		614	844	591	899	
Starvation Cap Reductn	0	0		0	0	0		0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0		0	0	0	0	
Storage Cap Reductn	0	0		0	0	0		0	0	0	0	
Reduced v/c Ratio	0.73	0.54		0.53	1.04	0.42		0.31	0.27	0.44	0.40	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 78.	1											
Natural Cycle: 95												
Control Type: Semi Act-Uno	coord											
Maximum v/c Ratio: 1.04							~					
Intersection Signal Delay: 3					ntersection							
Intersection Capacity Utilization	ation 95.2%			10	CU Level o	of Service	e F					
Analysis Period (min) 15												
~ Volume exceeds capac			ally infini	te.								
Queue shown is maximu												
# 95th percentile volume			eue may	be longe	r.							
Queue shown is maximu	im after two	cycles.										
Splits and Phases: 10: R	ange Road	& Two Mil	e Hill Ro	ad								
(g1) (g2					4	04						

Ø 1		₩ Ø4
11 s	35 s	44 s
	∲Ø6	1 08
9 s	37 s	44 s

HCM Unsignalized Intersection Capacity Analysis 11: Alaska Highway & Sumanik Dr

	≯	*	•	1	Ļ		
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1		^	∱ ⊅		
Traffic Volume (veh/h)	0	57	0	545	536	148	
Future Volume (Veh/h)	0	57	0	545	536	148	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	62	0	592	583	161	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	960	372	744				
vC1, stage 1 conf vol							7
vC2, stage 2 conf vol							
vCu, unblocked vol	960	372	744				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	90	100				
cM capacity (veh/h)	255	625	859			~	
,				0.0.4	0.0.0		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	62	296	296	389	355		
Volume Left	0	0	0	0	0		
Volume Right	62	0	0	0	161		
cSH	625	1700	1700	1700	1700		
Volume to Capacity	0.10	0.17	0.17	0.23	0.21		
Queue Length 95th (m)	2.5	0.0	0.0	0.0	0.0		
Control Delay (s)	11.4	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.4	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.5				
Intersection Capacity Utilizat	tion		29.7%	IC	U Level of	f Service	
Analysis Period (min)			15				
			10				

APPENDIX E - SYNCHRO REPORTS - INTERSECTION IMPROVEMENTS (2040 TOTAL CONDITION)

	۶	+	\mathbf{F}	4	+	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	ተተኈ		ሻሻ	<u></u>	1	ሻ	^	1	ካካ	<u>↑</u> ↑	1
Traffic Volume (vph)	180	1120	22	404	740	341	18	180	382	611	173	120
Future Volume (vph)	180	1120	22	404	740	341	18	180	382	611	173	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	0.1	0%	0.1	0.1	0%	0.1	0.1	0%	0.1	0.1	0%	0.1
Storage Length (m)	120.0	0,0	0.0	0.0	0,0	110.0	125.0	0,0	110.0	260.0	0,0	110.0
Storage Lanes	1		0.0	2		1	120.0		1	200.0		110.0
Taper Length (m)	7.5		U	7.5		•	7.5			7.5		•
Lane Util. Factor	1.00	0.91	0.91	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Ped Bike Factor	1.00	0.01	0.51	0.57	0.55	1.00	1.00	0.30	1.00	0.57	0.00	1.00
Frt		0.997				0.850			0.850			0.850
Flt Protected	0.950	0.991		0.950		0.000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	1789	5126	0	3471	3579	1601	1789	3579	1601	3471	3579	1601
		5120	U	0.950	3019	1001	0.633	3019	1001	0.950	3019	1001
Flt Permitted	0.291	F400	0		2570	1001		2570	1001		2570	4004
Satd. Flow (perm)	548	5126	0	3471	3579	1601	1192	3579	1601	3471	3579	1601
Right Turn on Red		0	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2				371			415			130
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	196	1217	24	439	804	371	20	196	415	664	188	130
Shared Lane Traffic (%)												
Lane Group Flow (vph)	196	1241	0	439	804	371	20	196	415	664	188	130
Turn Type	pm+pt	NA		Prot	NA	Perm	pm+pt	NA	Free	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8					4	6		Free			2
Detector Phase	3	8		7	4	4	1	6		5	2	2
Switch Phase								-		-		
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	6.0		5.0	6.0	6.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2		9.0	57.2	57.2
Total Split (s)	55.0	55.0		58.0	58.0	58.0	9.0	14.0		33.0	38.0	38.0
Total Split (%)	34.4%	34.4%		36.3%	36.3%	36.3%	5.6%	8.8%		20.6%	23.8%	23.8%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7		3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5		1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0		-1.5	0.0	0.0
Total Lost Time (s)	4.0	6.7		-1.5	6.7	0.0 6.7	4.0	7.2		-1.5	7.2	7.2
. ,												
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode	None	Min		None	Min	Min	None	Min	100.0	None	Min	Min 40.5
Act Effct Green (s)	54.8	38.9		26.3	50.5	50.5	21.6	13.1	129.8	31.8	42.5	42.5

VSMP TIA 2040 Total Conditions AM Peak Hour (Improvement) CQ

	≯	+	*	4	ł	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.42	0.30		0.20	0.39	0.39	0.17	0.10	1.00	0.24	0.33	0.33
v/c Ratio	0.55	0.81		0.63	0.58	0.44	0.09	0.54	0.26	0.78	0.16	0.21
Control Delay	24.5	48.0		53.4	35.2	5.0	30.5	60.7	0.4	54.5	33.6	6.3
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	24.5	48.0		53.4	35.2	5.0	30.5	60.7	0.4	54.5	33.6	6.3
LOS	С	D		D	D	А	С	Е	А	D	С	А
Approach Delay		44.8			33.2			20.1			44.1	
Approach LOS		D			С			С			D	
Queue Length 50th (m)	20.9	94.5		48.2	73.1	0.0	3.0	24.4	0.0	73.5	18.1	0.0
Queue Length 95th (m)	58.5	#193.6		96.6	160.3	24.4	9.7	42.0	0.0	#192.3	33.1	14.4
Internal Link Dist (m)		517.6			201.0			671.8			780.3	
Turn Bay Length (m)	120.0					110.0	125.0		110.0	260.0		110.0
Base Capacity (vph)	806	1991		1548	1545	902	222	360	1601	850	1170	611
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.24	0.62		0.28	0.52	0.41	0.09	0.54	0.26	0.78	0.16	0.21
Intersection Summary												
Area Type:	Other											
Cycle Length: 160												
Actuated Cycle Length: 12	29.8											
Natural Cycle: 150												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 0.81							-					

Intersection Signal Delay: 37.3 Intersection Capacity Utilization 74.3%

Intersection LOS: D ICU Level of Service D

Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 8: Alaska Highway & Hamilton Boulevard/Two Mile Hill Road

		Ø3	▲ Ø4
9 s 38 s	55 s	S	58 s
Ø5		07	 Ø8
33 s	14 s 58 s	5	55 s

	≯	-	*	4	+	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	<u>ተተ</u> ኑ		ካካ	^	1	<u></u>	^	1	ካካ	^	1
Traffic Volume (vph)	154	567	8	497	1044	742	12	212	321	395	179	183
Future Volume (vph)	154	567	8	497	1044	742	12	212	321	395	179	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	120.0	• / •	0.0	0.0	• / •	110.0	125.0	• / •	110.0	260.0	• / •	110.0
Storage Lanes	1		0.0	2		1	1		1	2		1
Taper Length (m)	7.5		Ū	7.5		•	7.5		•	7.5		
Lane Util. Factor	1.00	0.91	0.91	0.97	0.95	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Ped Bike Factor	1.00	0.01	0.01	0.01	0.00	1.00	1.00	0.00	1.00	0.01	0.00	1.00
Frt		0.998				0.850			0.850			0.850
Flt Protected	0.950	0.330		0.950		0.000	0.950		0.000	0.950		0.000
Satd. Flow (prot)	1789	5132	0	3471	3579	1601	1789	3579	1601	3471	3579	1601
Flt Permitted	0.149	0102	0	0.950	3319	1001	0.629	3319	1001	0.950	3319	1001
	281	5132	0	3471	2570	1601	1185	3579	1601	3471	2570	1601
Satd. Flow (perm)	201	5152		3471	3579		COLL	30/9		3471	3579	1601
Right Turn on Red		4	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			<u></u>	740		00	349		<u></u>	199
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		541.6			225.0			695.8			804.3	
Travel Time (s)		32.5			13.5			41.7			48.3	_
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	167	616	9	540	1135	807	13	230	349	429	195	199
Shared Lane Traffic (%)												
Lane Group Flow (vph)	167	625	0	540	1135	807	13	230	349	429	195	199
Turn Type	pm+pt	NA		Prot	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8					4	6		6			2
Detector Phase	3	8		7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	25.0		5.0	25.0	25.0	5.0	6.0	6.0	5.0	6.0	6.0
Minimum Split (s)	9.0	54.7		9.0	54.7	54.7	9.0	57.2	57.2	9.0	57.2	57.2
Total Split (s)	41.0	55.0		41.0	55.0	55.0	9.0	12.0	12.0	42.0	45.0	45.0
Total Split (%)	27.3%	36.7%		27.3%	36.7%	36.7%	6.0%	8.0%	8.0%	28.0%	30.0%	30.0%
Yellow Time (s)	3.0	3.7		3.0	3.7	3.7	3.0	3.7	3.7	3.0	3.7	3.7
All-Red Time (s)	1.0	3.0		1.0	3.0	3.0	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust (s)	0.0	0.0		-1.5	0.0	0.0	0.0	0.0	0.0	-1.5	0.0	0.0
Total Lost Time (s)	4.0	6.7		2.5	6.7	6.7	4.0	7.2	7.2	2.5	7.2	7.2
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode		Min		None	Min	Min		Min	Min		Min	
	None						None			None		Min
Act Effct Green (s)	57.8	41.2		26.9	52.8	52.8	19.6	10.8	10.8	22.0	34.3	34.3

VSMP TIA 2040 Total Conditions PM Peak Hour (Improvement) CQ

	٦	-	\mathbf{F}	•	+	*	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.48	0.34		0.22	0.44	0.44	0.16	0.09	0.09	0.18	0.28	0.28
v/c Ratio	0.55	0.36		0.70	0.73	0.72	0.06	0.72	0.76	0.68	0.19	0.33
Control Delay	25.2	34.7		51.6	35.1	8.8	29.8	67.0	16.4	54.3	32.5	5.6
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	25.2	34.7		51.6	35.1	8.8	29.8	67.0	16.4	54.3	32.5	5.6
LOS	С	С		D	D	Α	С	Е	В	D	С	Α
Approach Delay		32.7			30.1			36.3			37.4	
Approach LOS		С			С			D			D	
Queue Length 50th (m)	12.5	34.2		51.8	94.6	7.6	1.9	~33.5	0.0	42.6	16.6	0.0
Queue Length 95th (m)	55.8	90.2		125.5	#293.1	84.1	7.1	50.5	27.7	99.0	33.6	16.4
Internal Link Dist (m)		517.6			201.0			671.8			780.3	
Turn Bay Length (m)	120.0					110.0	125.0		110.0	260.0		110.0
Base Capacity (vph)	661	2185		1178	1560	1115	218	318	460	1208	1352	728
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.25	0.29		0.46	0.73	0.72	0.06	0.72	0.76	0.36	0.14	0.27
Intersection Summary												
51	Other											
Cycle Length: 150												
Actuated Cycle Length: 121	.1											
Natural Cycle: 150												
Control Type: Actuated-Unc	coordinated											
Maximum v/c Ratio: 0.76							<u> </u>					
Intersection Signal Delay: 3					ntersection							
Intersection Capacity Utiliza	ation 75.3%				CU Level	of Service	e D					
Analysis Period (min) 15												
 Volume exceeds capaci 			ally infinit	e.								
Queue shown is maximu												
# 95th percentile volume			eue may l	be longe	r.							
Queue shown is maximu	im after two	cycles.										
		0.11										
Splits and Phases: 8: Ala	ska Highwa	iy & Hamil	ton Boule	evard/1w	/o Mile Hil	Road						

	eri adola riiginay a riamia		
		≯	▲
9 45 6		41 s	04
55 155		-	
Ø5	Tøs	√ Ø7	
42 s	12 s	41 s	55 s

	۶	-	\mathbf{i}	4	-	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	ተተኈ		5	<u> </u>	*		र्च	1	<u>ک</u>	ę	
Traffic Volume (vph)	226	1712	19	77	700	174	7	116	265	338	84	168
Future Volume (vph)	226	1712	19	77	700	174	7	116	265	338	84	168
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	•	0%	•	•	0%	•	•	0%	•	•	0%	•
Storage Length (m)	140.0	070	0.0	75.0	070	175.0	0.0	070	30.0	0.0	0,0	50.0
Storage Lanes	1		0.0	1		1	0.0		1	1		0.00
Taper Length (m)	7.5		U	7.5			7.5			7.5		U
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.31	0.91	1.00	0.31	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.998				0.850			0.850		0.900	
Flt Protected	0.950	0.990		0.950		0.000		0.997	0.000	0.950	0.300	
	1789	5132	0	1789	5142	1601	0	1878	1601	1789	1695	0
Satd. Flow (prot)		5152	U		314Z	1001	0		1001		1090	U
Flt Permitted	0.311	5400	0	0.114	5440	4004	0	0.975	1001	0.671	4005	0
Satd. Flow (perm)	586	5132	0	215	5142	1601	0	1836	1601	1264	1695	0
Right Turn on Red		•	Yes			Yes			Yes		100	Yes
Satd. Flow (RTOR)		2				189			153		126	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		225.0			1098.9			1141.1			1649.4	
Travel Time (s)		13.5			65.9			82.2			118.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	246	1861	21	84	761	189	8	126	288	367	91	183
Shared Lane Traffic (%)												
Lane Group Flow (vph)	246	1882	0	84	761	189	0	134	288	367	274	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6	-	6	8	-	8	4		
Detector Phase	5	2		1	6	6	8	8	8	4	4	
Switch Phase				•	Ū	•	Ū	Ū	Ū	•	•	
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	9.0	31.2		9.5	31.2	31.2	14.8	14.8	14.8	43.8	43.8	
Total Split (s)	10.0	41.0		10.0	41.0	41.0	44.0	44.0	44.0	44.0	44.0	
Total Split (%)	10.5%	43.2%		10.5%	43.2%	43.2%	46.3%	46.3%	46.3%	46.3%	46.3%	
Yellow Time (s)	10.5% 3.0	43.2% 3.7		3.5	43.2%	43.2%	40.3%	40.3%	40.3%	40.3%	40.5%	
All-Red Time (s)	3.0 1.0	3.7 3.5		3.5 1.0	3.7	3.7	3.3 4.5	3.3 4.5	3.3 4.5	3.3 4.5	3.3 4.5	
,	0.0						4.0					
Lost Time Adjust (s)		-1.0		0.0	0.0	0.0		0.0	0.0	-1.8	-1.3	
Total Lost Time (s)	4.0	6.2		4.5	7.2	7.2		7.8	7.8	6.0	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	• ~	• ···	•			
Recall Mode	None	Max		None	Max	Max	Min	Min	Min	Min	Min	
Act Effct Green (s)	44.2	37.3		42.2	34.0	34.0		30.3	30.3	32.1	31.6	

VSMP TIA 2040 Total Conditions AM Peak Hour (Improvement) CQ

	٦	-	\mathbf{r}	4	+	*	1	1	1	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.49	0.42		0.47	0.38	0.38		0.34	0.34	0.36	0.35	
v/c Ratio	0.66	0.88		0.42	0.39	0.26		0.22	0.45	0.81	0.40	
Control Delay	25.6	32.3		19.3	21.8	4.3		21.4	12.4	40.8	12.7	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay	25.6	32.3		19.3	21.8	4.3		21.4	12.4	40.8	12.7	
LOS	С	С		В	С	А		С	В	D	В	
Approach Delay		31.5			18.4			15.2			28.8	
Approach LOS		С			В			В			С	
Queue Length 50th (m)	23.9	119.1		7.5	36.5	0.0		16.1	16.4	55.7	17.6	
Queue Length 95th (m)	#45.9	#162.2		15.7	48.9	13.2		28.8	36.6	90.6	36.6	
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0		175.0			30.0			
Base Capacity (vph)	370	2141		199	1954	725		747	742	540	787	
Starvation Cap Reductn	0	0		0	0	0		0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0		0	0	0	0	
Storage Cap Reductn	0	0		0	0	0		0	0	0	0	
Reduced v/c Ratio	0.66	0.88		0.42	0.39	0.26		0.18	0.39	0.68	0.35	
Intersection Summary												
Area Type:	Other											
Cycle Length: 95												
Actuated Cycle Length: 89	9.4											
Natural Cycle: 95												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 0.88							~					
Intersection Signal Delay:					tersection							
Intersection Capacity Utiliz	zation 85.7%			IC	CU Level o	of Service	E					
Analysis Period (min) 15												
# 95th percentile volume			eue may l	be longer								
Queue shown is maxin	num after two	o cycles.										
. .												
Splits and Phases: 10:	Range Road	& Two Mi	e Hill Roa	ad								

Ø1		▼Ø4
10 s	41 s	44 s
▶ Ø5	◆ Ø6	1 page 1
10 s	41 s	44 s

	٠	-	\mathbf{i}	4	-	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	ተተኈ		۲	^	1		र्स	1	5	eî 👘	
Traffic Volume (vph)	148	943	11	145	1904	324	39	135	211	238	91	243
Future Volume (vph)	148	943	11	145	1904	324	39	135	211	238	91	243
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	140.0		0.0	75.0		175.0	0.0		30.0	0.0		50.0
Storage Lanes	1		0	1		1	0		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.998				0.850			0.850		0.891	
Flt Protected	0.950			0.950				0.989		0.950		
Satd. Flow (prot)	1789	5132	0	1789	5142	1601	0	1863	1601	1789	1678	0
Flt Permitted	0.091			0.219				0.604		0.632		
Satd. Flow (perm)	171	5132	0	412	5142	1601	0	1138	1601	1190	1678	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2				352			160		123	
Link Speed (k/h)		60			60			50			50	
Link Distance (m)		225.0			1098.9			1141.1			1649.4	
Travel Time (s)		13.5			65.9			82.2			118.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	161	1025	12	158	2070	352	42	147	229	259	99	264
Shared Lane Traffic (%)												
Lane Group Flow (vph)	161	1037	0	158	2070	352	0	189	229	259	363	0
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		
Detector Phase	5	2		1	6	6	8	8	8	4	4	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	9.0	31.2		9.5	31.2	31.2	14.8	14.8	14.8	43.8	43.8	
Total Split (s)	10.0	51.0		10.0	51.0	51.0	44.0	44.0	44.0	44.0	44.0	
Total Split (%)	9.5%	48.6%		9.5%	48.6%	48.6%	41.9%	41.9%	41.9%	41.9%	41.9%	
Yellow Time (s)	3.0	3.7		3.5	3.7	3.7	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	1.0	3.5		1.0	3.5	3.5	4.5	4.5	4.5	4.5	4.5	
Lost Time Adjust (s)	0.0	-1.0		0.0	0.0	0.0		0.0	0.0	-1.8	-1.3	
Total Lost Time (s)	4.0	6.2		4.5	7.2	7.2		7.8	7.8	6.0	6.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	Mana	Max		None	Max	Max	Min	Min	Min	Min	Min	
	None 53.3	IVIAX		52.3	44.1	44.1			27.0	28.8	28.3	

VSMP TIA 2040 Total Conditions PM Peak Hour (Improvement) CQ

	٦	→	\mathbf{r}	∢	←	•	•	1	۲	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio	0.55	0.47		0.54	0.46	0.46		0.28	0.28	0.30	0.29	
v/c Ratio	0.82	0.43		0.52	0.88	0.38		0.59	0.41	0.73	0.63	
Control Delay	49.6	18.7		18.1	30.4	3.4		37.5	10.9	42.4	23.5	
Queue Delay	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay	49.6	18.7		18.1	30.4	3.4		37.5	10.9	42.4	23.5	
LOS	D	В		В	С	А		D	В	D	С	
Approach Delay		22.8			26.0			22.9			31.4	
Approach LOS		С			С			С			С	
Queue Length 50th (m)	13.0	46.3		12.6	126.5	0.0		30.1	9.6	42.7	37.8	
Queue Length 95th (m)	#54.3	66.4		26.2	#185.1	16.2		51.4	27.3	70.0	65.6	
Internal Link Dist (m)		201.0			1074.9			1117.1			1625.4	
Turn Bay Length (m)	140.0			75.0		175.0			30.0			
Base Capacity (vph)	196	2405		303	2355	924		430	705	473	733	
Starvation Cap Reductn	0	0		0	0	0		0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0		0	0	0	0	
Storage Cap Reductn	0	0		0	0	0		0	0	0	0	
Reduced v/c Ratio	0.82	0.43		0.52	0.88	0.38		0.44	0.32	0.55	0.50	
Intersection Summary												
Area Type:	Other											
Cycle Length: 105												
Actuated Cycle Length: 96	5.2											
Natural Cycle: 95												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 0.88							-					
Intersection Signal Delay:					ntersection							
Intersection Capacity Utiliz	zation 95.2%			10	CU Level o	of Service	F					
Analysis Period (min) 15												
# 95th percentile volume			eue may l	be longe	r.							
Queue shown is maxim	num after two	cycles.										
Splits and Phases: 10: I	Range Road	& Two Mil	e Hill Roa	ad								

√ Ø1			Ø4	
10 s	51 s		44 s	
	₹ Ø6		₩ø8	
10 s	51 e		44 s	

APPENDIX F – SYNCHRO REPORTS – CLOSURE OF SUMANIK DRIVE BETWEEN VALLEYVIEW DRIVE AND ALASKA HIGHWAY

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

Jane Group EBL EBT EBR WBL WBT WBR NBT NBR SBL SBT SBR Lane Configurations		۶	-	\mathbf{F}	4	+	•	•	1	1	1	Ļ	~
Traffic Volume (vph) 213 37 237 36 19 3 87 295 147 52 464 194 Ideal Flow (vphp) 1900 100 100 0.0 100	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 213 37 237 36 19 3 87 295 147 52 464 194 Ideal Flow (vphp) 1900 100 100 0.0 100	Lane Configurations		4		۲	4Î			^	1	۲	† †	
ideal Flow (vph) 1900 1000 100	Traffic Volume (vph)	213		237	36		3	87		147	52		194
Lane Width (m) 3.7	Future Volume (vph)	213	37	237	36	19	3	87	295	147	52	464	194
Grade (%) 0% 0% 0% 0% 0% 0% Storage Length (m) 0.0 0.0 0.0 0.0 1 1 0 Taper Length (m) 7.5 7.5 7.5 7.5 7.5 Lane Util, Factor 1.00 1.00 1.00 1.00 0.950 0.950 Ped Bike Factor 0.934 0.981 0.850 0.950 0.950 FIT 0.934 0.981 0.850 0.950 0.950 Satid. Flow (prot) 0 1722 0 1789 1848 0 0 3539 1601 1789 3421 0 Satid. Flow (prot) 0 1492 0 874 1848 0 0 2426 1601 1789 3421 0 Right Turu on Red Yes	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m) 0.0 0.0 0.0 0.0 175.0 130.0 0.0 Storage Lanes 0 0 1 0 0 1 1 0 Storage Lanes 0 0 1.00 1.00 0.95 0.95 7.5 7.5 Lane Ulli Factor 1.00 1.00 1.00 0.950 <td>Lane Width (m)</td> <td>3.7</td>	Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Storage Lanes 0 0 1 0 0 1 1 0 Taper Length (m) 7.5 7.	Grade (%)		0%			0%			0%			0%	
Taper Length (m) 7.5 7.5 7.5 7.5 7.5 7.5 Lane Uhi, Factor 1.00 1.00 1.00 1.00 1.00 9.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.950 </td <td>Storage Length (m)</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td></td> <td>175.0</td> <td>130.0</td> <td></td> <td>0.0</td>	Storage Length (m)	0.0		0.0	0.0		0.0	0.0		175.0	130.0		0.0
Lane Utili Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 0.09 0.950 Ped Bike Factor 0.979 0.950 0.980 0.950 0.980 0.950 Stat. Flow (prot) 0 1722 0 1789 1848 0 0 3539 1601 1789 3421 0 Stat. Flow (perm) 0 1492 0 874 1848 0 0 246 1601 1789 3421 0 Stat. Flow (perm) 0 1492 0 874 1848 0 0 246 1601 1789 3421 0 Stat. Flow (RTOR) 74	Storage Lanes	0		0	1		0	0		1	1		0
Ped Bike Factor 0.934 0.981 0.850 0.956 FIt Protected 0.979 0.950 0.850 0.950 Satd. Flow (port) 0 1722 0 1788 1848 0 0 3339 1601 1789 3421 0 FIt Permitted 0.848 0.464 0.673 1600 1789 3421 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 74 3 160 91 111111 11111 111111 111111 111111 111111 111111 111111 1111111 1111111	Taper Length (m)	7.5			7.5			7.5			7.5		
Frt 0.934 0.981 0.850 0.956 FIL Protected 0.979 0.950 0.989 0.950 Satd. Flow (port) 0 1722 0 1789 1848 0 0.3539 1601 1789 3421 0 Satd. Flow (perm) 0 1492 0 874 1848 0 0 2426 1601 1789 3421 0 Satd. Flow (perm) 0 1492 0 874 1848 0 0 2426 1601 1789 3421 0 Satd. Flow (RTOR) 74 - 3 - 160 91 - State State 160 91 111 1089 8421 0 0 100	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	0.95	0.95
Fit Protected 0.979 0.950 0.989 0.950 Satd. Flow (prot) 0 1722 0 1789 1848 0 0 339 1601 1789 3421 0 Right Turn on Red 0 1492 0 874 1848 0 0 2426 1601 1789 3421 0 Right Turn on Red Yes Yes <td>Ped Bike Factor</td> <td></td>	Ped Bike Factor												
Satd. Flow (prot) 0 1722 0 1789 1848 0 0 3539 1601 1789 3421 0 FIP Fermitted 0.848 0.464 0.678 0.950	Frt		0.934			0.981				0.850		0.956	
Fit Permitted 0.848 0.464 0.678 0.950 Satd. Flow (perm) 0 1492 0 874 1848 0 0 2426 1601 1789 3421 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Link Speed (k/h) 48 50 70 70 70 70 Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 9.2 0.92	Flt Protected		0.979		0.950				0.989		0.950		
Satd. Flow (perm) 0 1492 0 874 1848 0 0 2426 1601 1789 3421 0 Right Turn on Red Yes Yes <td>Satd. Flow (prot)</td> <td>0</td> <td>1722</td> <td>0</td> <td>1789</td> <td>1848</td> <td>0</td> <td>0</td> <td>3539</td> <td>1601</td> <td>1789</td> <td>3421</td> <td>0</td>	Satd. Flow (prot)	0	1722	0	1789	1848	0	0	3539	1601	1789	3421	0
Right Turn on Red Yes	Flt Permitted		0.848		0.464				0.678		0.950		
Satd. Flow (RTOR) 74 3 160 91 Link Speed (k/h) 48 50 70 70 Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 9.2 82.2 45.8 20.8 Confl. Peds. (#hr) - 82.2 45.8 20.92 0.92 </td <td>Satd. Flow (perm)</td> <td>0</td> <td>1492</td> <td>0</td> <td>874</td> <td>1848</td> <td>0</td> <td>0</td> <td>2426</td> <td>1601</td> <td>1789</td> <td>3421</td> <td>0</td>	Satd. Flow (perm)	0	1492	0	874	1848	0	0	2426	1601	1789	3421	0
Link Speed (kh) 48 50 70 70 70 Link Distance (m) 122.4 1111.1 899.8 404.2 1111.1 899.8 404.2 1111.1 899.8 404.2 1111.1 899.8 404.2 1111.1 899.8 404.2 1111.1 899.8 404.2 1111.1 899.8 404.2 1111.1 899.8 404.2 1111.1 899.8 404.2 1111.1 601.1 601.1 601.1 601.1 100%	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 9.2 82.2 45.8 20.8 Confl. Bikes (#hr) -	Satd. Flow (RTOR)		74			3				160		91	
Travel Time (s) 9.2 82.2 45.8 20.8 Confl. Bikes (#/hr) Confl. Bikes (#/hr) Ventoe Ventoe <td>Link Speed (k/h)</td> <td></td> <td>48</td> <td></td> <td></td> <td>50</td> <td></td> <td></td> <td>70</td> <td></td> <td></td> <td>70</td> <td></td>	Link Speed (k/h)		48			50			70			70	
Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.92	Link Distance (m)		122.4			1141.1			889.8			404.2	
Confl. Bikes (#/hr) Peak Hour Factor 0.92	Travel Time (s)		9.2			82.2			45.8			20.8	
Peak Hour Factor 0.92	Confl. Peds. (#/hr)												
Growth Factor 100% </td <td>Confl. Bikes (#/hr)</td> <td></td>	Confl. Bikes (#/hr)												
Heavy Vehicles (%) 2% 2	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Bus Blockages (#/hr) 0	Growth Factor		100%	100%	100%	100%		100%		100%		100%	
Parking (#hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% Adj. Flow (vph) 232 40 258 39 21 3 95 321 160 57 504 211 Shared Lane Traffic (%) 0 530 0 39 24 0 0 416 160 57 715 0 Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 4 8 6 6 5 2 Detector Phase 4 4 8 6 6 5 2 Switch Phase		2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Mid-Block Traffic (%) 0% 0% 0% 0% 0% 0% Adj. Flow (vph) 232 40 258 39 21 3 95 321 160 57 504 211 Shared Lane Traffic (%) 0 530 0 39 24 0 0 416 160 57 715 0 Turn Type Perm NA Sa Sa Sa Sa		0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 232 40 258 39 21 3 95 321 160 57 504 211 Shared Lane Traffic (%) 0 530 0 39 24 0 0 416 160 57 715 0 Turn Type Perm NA Size	Parking (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph) 0 530 0 39 24 0 0 416 160 57 715 0 Turn Type Perm NA NA NA NA NA NA NA </td <td>Mid-Block Traffic (%)</td> <td></td>	Mid-Block Traffic (%)												
Lane Group Flow (vph) 0 530 0 39 24 0 0 416 160 57 715 0 Turn Type Perm NA Perm Perm NA Perm Pintinin in time<		232	40	258	39	21	3	95	321	160	57	504	211
Turn Type Perm NA Perm NA Perm NA Perm NA Perm Protected Phases 4 8 6 5 2 Permitted Phases 4 4 8 8 6 6 5 2 Detector Phase 4 4 8 8 6 6 5 2 Switch Phase 7.0 7.0 5.0 5.0 20.0 20.0 5.0 20.0 Minimum Initial (s) 7.0 7.0 5.0 20.0 20.0 5.0 20.0 Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.0 3.0 1.0 1.0													
Protected Phases 4 8 6 5 2 Permitted Phases 4 8 6 6 6 6 6 5 2 Detector Phase 4 4 8 8 6 6 5 2 Switch Phase	Lane Group Flow (vph)	0		0	39		0						0
Permitted Phases 4 8 6 6 6 Detector Phase 4 4 8 8 6 6 5 2 Switch Phase		Perm			Perm			Perm		Perm		NA	
Detector Phase 4 4 8 8 6 6 6 5 2 Switch Phase Minimum Initial (s) 7.0 7.0 5.0 20.0 <td< td=""><td>Protected Phases</td><td></td><td>4</td><td></td><td></td><td>8</td><td></td><td></td><td>6</td><td></td><td>5</td><td>2</td><td></td></td<>	Protected Phases		4			8			6		5	2	
Switch Phase Minimum Initial (s) 7.0 7.0 5.0 5.0 20.0 20.0 20.0 5.0 20.0 Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0													
Minimum Initial (s) 7.0 7.0 5.0 5.0 20.0 20.0 5.0 20.0 Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (s) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 1.0 2.0 Lost Time (s) 0.0 <td< td=""><td></td><td>4</td><td>4</td><td></td><td>8</td><td>8</td><td></td><td>6</td><td>6</td><td>6</td><td>5</td><td>2</td><td></td></td<>		4	4		8	8		6	6	6	5	2	
Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (s) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag													
Total Split (s) 45.0 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lead Lead Lead Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Recall Mode None None None Min Min Min Min								20.0	20.0	20.0			
Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag	Minimum Split (s)												
Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lag Lead Recall Mode None None None Min Min Min Min	Total Split (s)												
All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lead Recall Mode None None None Min Min Min Min													
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None None None Min Min None Min	Yellow Time (s)		3.3		3.5	3.5		3.7	3.7	3.7	3.0		
Total Lost Time (s)6.34.54.55.75.74.05.7Lead/LagLagLagLagLagLeadLead-Lag Optimize?YesYesYesYesRecall ModeNoneNoneNoneMinMinMinNone		3.0						2.0					
Lead/LagLagLagLagLagLeadLead-Lag Optimize?YesYesYesYesRecall ModeNoneNoneNoneMinMinNoneMin													
Lead-Lag Optimize?YesYesYesRecall ModeNoneNoneNoneMinMinNoneMin	Total Lost Time (s)		6.3		4.5	4.5			5.7	5.7	4.0	5.7	
Recall Mode None None None Min Min Min None Min								Lag	•	Lag	Lead		
	Lead-Lag Optimize?							Yes		Yes	Yes		
Act Effct Green (s) 25.3 27.2 27.2 22.1 22.1 6.2 27.3	Recall Mode	None						Min		Min			
	Act Effct Green (s)		25.3		27.2	27.2			22.1	22.1	6.2	27.3	

VSMP TIA 2040 Total Conditions AM Peak Hour (East Sumanik Closed) $\ensuremath{\mathsf{CQ}}$

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

	۶	-	\mathbf{F}	•	+	•	•	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Actuated g/C Ratio		0.39		0.42	0.42			0.34	0.34	0.09	0.42	
v/c Ratio		0.85		0.11	0.03			0.51	0.25	0.34	0.48	
Control Delay		30.0		13.0	11.0			23.5	5.5	39.6	14.3	
Queue Delay		0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay		30.0		13.0	11.0			23.5	5.5	39.6	14.3	
LOS		С		В	В			С	А	D	В	
Approach Delay		30.0			12.2			18.5			16.2	
Approach LOS		С			В			В			В	
Queue Length 50th (m)		52.5		2.9	1.5			23.7	0.0	7.0	27.8	
Queue Length 95th (m)		98.1		8.7	5.5			45.4	13.1	20.6	53.7	
Internal Link Dist (m)		98.4			1117.1			865.8			380.2	
Turn Bay Length (m)									175.0	130.0		
Base Capacity (vph)		965		575	1217			958	729	174	1947	
Starvation Cap Reductn		0		0	0			0	0	0	0	
Spillback Cap Reductn		0		0	0			0	0	0	0	
Storage Cap Reductn		0		0	0			0	0	0	0	
Reduced v/c Ratio		0.55		0.07	0.02			0.43	0.22	0.33	0.37	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 65.3												
Natural Cycle: 85												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.85												
Intersection Signal Delay: 20).5			Ir	ntersection	n LOS: C						
Intersection Capacity Utilizat	ion 85.4%			IC	CU Level o	of Service	E					
Analysis Period (min) 15												
					T							

Splits and Phases: 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

		<u></u> Ø4
40 s		45 s
Ø5	d de la constanti de la const	₩ Ø8
10 s	30 s	45 s

HCM Unsignalized Intersection Capacity Analysis 4: Valleyview Dr & Sumanik Drive

	٦	\mathbf{i}	•	Ť	Ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Υ			र्स	f,		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	71	43	88	25	34	31	
Future Volume (vph)	71	43	88	25	34	31	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	77	47	96	27	37	34	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	124	123	71				
Volume Left (vph)	77	96	0				
Volume Right (vph)	47	0	34				
Hadj (s)	-0.07	0.19	-0.25				
Departure Headway (s)	4.3	4.5	4.1				
Degree Utilization, x	0.15	0.15	0.08				
Capacity (veh/h)	807	780	841				
Control Delay (s)	8.0	8.2	7.4				
Approach Delay (s)	8.0	8.2	7.4				
Approach LOS	А	А	А				
Intersection Summary							
Delay			8.0				
Level of Service			А				
Intersection Capacity Utiliza	tion		26.1%	IC	U Level o	f Service	А
Analysis Period (min)			15				

*

HCM Unsignalized Intersection Capacity Analysis 3: Internal Rd (McIntyre Dr Extension) & Internal Rd (Range Rd Extenstion)

	→	\mathbf{r}	4	-	1	۲	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	¢Î,			स्	Y		
Traffic Volume (veh/h)	252	0	32	136	0	86	
Future Volume (Veh/h)	252	0	32	136	0	86	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	274	0	35	148	0	93	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)				356			
pX, platoon unblocked							
vC, conflicting volume			274		492	274	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			274		492	274	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			97		100	88	
cM capacity (veh/h)			1289		521	765	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	274	183	93				
Volume Left	0	35	0				
Volume Right	0	0	93				
cSH	1700	1289	765				
Volume to Capacity	0.16	0.03	0.12				
Queue Length 95th (m)	0.0	0.6	3.1				
Control Delay (s)	0.0	1.7	10.4				
Lane LOS		A	В				
Approach Delay (s)	0.0	1.7	10.4				
Approach LOS			В				
Intersection Summary							
Average Delay			2.3				
Intersection Capacity Utiliz	ation		37.5%		U Level o	f Service	
Analysis Period (min)			15				
			10				

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

jane Group EBL EBT EBR WBL WBT WBL NBT NBT NBT SBL SBT SBR Lane Configurations		۶	→	\mathbf{F}	4	+	•	•	1	1	1	Ļ	~
Traffic Volume (vph) 171 27 145 98 32 20 153 412 173 13 493 324 Ideal Flow (vphp) 1900 100	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 171 27 145 98 32 20 153 412 173 13 493 324 Ideal Flow (vphpt) 1900 100	Lane Configurations		4		۲	4Î			^	1	۲	^	
Ideal Flow (vph) 1900 1000 100	Traffic Volume (vph)	171		145	98		20	153		173	13		324
Lane Width (m) 3.7	Future Volume (vph)	171	27	145	98	32	20	153	412	173	13	493	324
Grade (%) 0% 0% 0% 0% 0% 0% Storage Length (m) 0.0 0.0 0.0 0.0 175.0 130.0 0.0 Taper Length (m) 7.5	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m) 0.0 0.0 0.0 0.0 175.0 130.0 0.0 Storage Lanes 0 0 1 0 0 1 1 0 Storage Lanes 0 0 1.00 1.00 0.00 0.95 0.95 7.5 7.5 Lane Ubli Factor 1.00 1.00 1.00 0.915 0.950 0.950 0.967 0.950 0.967 0.950 0.950 0.967 0.950 0.967 0.950 0.950 0.967 0.950 0.967 0.950 0.967 0.950 0.967 0.950 0.967 0.950 0.967 0.950 0.950 0.967 0.950 0.967 0.950 0.967 0.950 0.967 0.950 0.967 0.950 0.967 0.950 0.967 0.950 0.950 0.967 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950	Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Storage Lanes 0 0 1 0 0 1 1 0 Taper Length (m) 7.5 7.	Grade (%)		0%			0%			0%			0%	
Tape Length (m) 7.5 7.5 7.5 7.5 7.5 7.5 Lane Uhl, Factor 1.00 1.00 1.00 1.00 1.00 0.95 0.96 1.00 0.95 0.95 Pd Bik Factor 0.976 0.950 0.987 0.950 0.950 0.950 Stat. Flow (prot) 0 1733 0 1789 1774 0 0 3332 1601 1789 3367 0 FIP Permitted 0.813 0.541 0 0.613 0.950 765 Yes	Storage Length (m)	0.0		0.0	0.0		0.0	0.0		175.0	130.0		0.0
Lame Utili Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 1.00 0.95 0.95 Ped Bike Factor 0.943 0.943 0.940 0.985 0.985 0.985 0.985 FIH Protected 0.976 0.950 0.985 0.985 0.985 0.950 0.950 Satd. Flow (perm) 0 1443 0.1019 1774 0 0.33322 1601 1789 3367 0 Satd. Flow (perm) 0 1444 0 1019 1774 0 0 2194 4601 1789 3367 0 Satd. Flow (perm) 0 1444 0 1019 1774 0 0 2194 4601 1789 3367 0 Tim Distance (m) 122.4 11411 889.8 404.2 1704 1100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%	Storage Lanes	0		0	1		0	0		1	1		0
Ped Bike Factor	Taper Length (m)	7.5			7.5			7.5			7.5		
Frt 0.943 0.942 0.860 0.941 FI Protected 0.976 0.950 0.987 0.980 0.950 Satk. Flow (prot) 0 1733 0 1789 174 0 0 3532 1601 1789 3367 0 FIt Permitted 0.813 0.541 0 0 124 1601 1789 3367 0 Satk. Flow (prot) 0 1444 0 1019 1774 0 0 214 1601 1789 3367 0 Satk. Flow (RTOR) 57 22 188 217 10 124 11411 899.8 404.2 1141 189.8 404.2 1741 141 899.8 404.2 1741 100% <td< td=""><td>Lane Util. Factor</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>0.95</td><td>0.95</td><td>1.00</td><td>1.00</td><td>0.95</td><td>0.95</td></td<>	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	0.95	0.95
Fit Protected 0.976 0.950 0.987 0.950 Satd. Flow (prot) 0 1733 0 1789 1774 0 0 332 1601 1789 3367 0 Fit Permitted 0.813 0.541 0.613 0.950 1789	Ped Bike Factor												
Satd. Flow (prot) 0 1733 0 1789 1774 0 0 3532 1601 1789 3367 0 FI Permitted 0.813 0.541 0.613 0.950	Frt		0.943			0.942				0.850		0.941	
Fit Permitted 0.813 0.541 0.613 0.950 Satd. Flow (perm) 0 1444 0 1019 1774 0 0 2194 1601 1789 3367 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 57 22 188 217 1 1019 1770 70 70 10 1 111 889.8 404.2 1 141.1 889.8 404.2 1 141.1 10 100%	Flt Protected		0.976		0.950				0.987		0.950		
Satd. Flow (perm) 0 1444 0 1019 1774 0 0 2194 1601 1789 3367 0 Right Turn on Red Yes Yes </td <td>Satd. Flow (prot)</td> <td>0</td> <td>1733</td> <td>0</td> <td>1789</td> <td>1774</td> <td>0</td> <td>0</td> <td>3532</td> <td>1601</td> <td>1789</td> <td>3367</td> <td>0</td>	Satd. Flow (prot)	0	1733	0	1789	1774	0	0	3532	1601	1789	3367	0
Right Turn on Red Yes Yes Yes Yes Yes Yes Satel. Flow (RTOR) 57 22 188 217 Link Speed (k/h) 50 50 70 70 Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 8.8 82.2 45.8 20.8 Confl. Bikes (#hr)	Flt Permitted		0.813		0.541				0.613		0.950		
Satd. Flow (RTOR) 57 22 188 217 Link Speed (Mh) 50 50 70 70 Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 8.8 82.2 45.8 20.8 Confl. Peds. (#hr)	Satd. Flow (perm)	0	1444	0	1019	1774	0	0	2194	1601	1789	3367	0
Link Speed (k/h) 50 50 70 70 70 Link Distance (m) 122.4 1141.1 889.8 404.2 1141.1 70 100 100.2 100.8 100.8 20.8 20.8 20.8 20.8 20.8 20.92 0	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (m) 122.4 1141.1 889.8 404.2 Travel Time (s) 8.8 62.2 45.8 20.8 Confl. Bikes (#hr)	Satd. Flow (RTOR)		57			22				188		217	
Travel Time (s) 8.8 82.2 45.8 20.8 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Ventoe	Link Speed (k/h)		50			50			70			70	
Confl. Peds. (#/hr) Peak Hour Factor 0.92	Link Distance (m)		122.4			1141.1			889.8			404.2	
Confl. Bikes (#/hr) Peak Hour Factor 0.92	Travel Time (s)		8.8			82.2			45.8			20.8	
Peak Hour Factor 0.92	Confl. Peds. (#/hr)												
Growth Factor 100% </td <td>Confl. Bikes (#/hr)</td> <td></td>	Confl. Bikes (#/hr)												
Heavy Vehicles (%) 2% 2	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Bus Blockages (#hr) 0 373 0 107 57 0 0 614 188 14 888 0 0 0 0 373 0 107 57 0 0 614 188 14 888 0 0 107 177 0 0 14 88 0 0 107 107 107 0 0 614 188 14 888 0 107 108 107 108 107 108 107 108 107 108	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Parking (#hr) Mid-Block Traffic (%) 0% 0% 0% 0% 0% Adj. Flow (vph) 186 29 158 107 35 22 166 448 188 14 536 352 Shared Lane Traffic (%) 0 0 373 0 107 57 0 0 614 188 14 888 0 Turn Type Perm NA Suithin thin tradin thin thin thin		2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Mid-Block Traffic (%) 0% 0% 0% 0% 0% Adj. Flow (vph) 186 29 158 107 35 22 166 448 188 14 536 352 Shared Lane Traffic (%) 0 373 0 107 57 0 0 614 188 14 888 0 Turn Type Perm NA Size Size Size Size		0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 186 29 158 107 35 22 166 448 188 14 536 352 Shared Lane Traffic (%) 0 373 0 107 57 0 0 614 188 14 536 352 Shared Lane Traffic (%) 0 373 0 107 57 0 0 614 188 14 888 0 Turn Type Perm NA NA NA NA NA NA NA NA NA	Parking (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph) 0 373 0 107 57 0 0 614 188 14 888 0 Turn Type Perm NA NA Perm NA	Mid-Block Traffic (%)												
Lane Group Flow (vph) 0 373 0 107 57 0 0 614 188 14 888 0 Turn Type Perm NA Perm		186	29	158	107	35	22	166	448	188	14	536	352
Tum Type Perm NA Perm NA Perm NA Perm Protected Phases 4 8 6 5 2 Permitted Phases 4 4 8 6 6 5 2 Detector Phase 4 4 8 8 6 6 5 2 Switch Phase 4 4 8 8 6 6 5 2 Minimum Initial (s) 7.0 7.0 5.0 20.0 20.0 20.0 20.0 Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 10.0 40.0 Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 1.0 2.0													
Protected Phases 4 8 6 5 2 Permitted Phases 4 4 8 6 6 6 Detector Phase 4 4 8 8 6 6 5 2 Switch Phase	Lane Group Flow (vph)	0		0	107		0						0
Permitted Phases 4 8 6 6 6 Detector Phase 4 4 8 8 6 6 5 2 Switch Phase		Perm			Perm			Perm		Perm		NA	
Detector Phase 4 4 8 8 6 6 6 5 2 Switch Phase Minimum Initial (s) 7.0 7.0 5.0 20.0 <td< td=""><td>Protected Phases</td><td></td><td>4</td><td></td><td></td><td>8</td><td></td><td></td><td>6</td><td></td><td>5</td><td>2</td><td></td></td<>	Protected Phases		4			8			6		5	2	
Switch Phase Minimum Initial (s) 7.0 7.0 5.0 5.0 20.0 20.0 5.0 20.0 Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lead Lead Lead Lead Lead Lag Lead Ead Ead Ead Ead Ead Ead </td <td></td>													
Minimum Initial (s) 7.0 7.0 5.0 5.0 20.0 20.0 5.0 20.0 Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0		4	4		8	8		6	6	6	5	2	
Minimum Split (s) 44.3 44.3 22.5 22.5 27.7 27.7 27.7 9.0 25.7 Total Split (s) 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (s) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lead Lead Lag Lead Lag Lead Kes Yes Yes <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Total Split (s) 45.0 45.0 45.0 45.0 45.0 30.0 30.0 30.0 10.0 40.0 Total Split (%) 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lag Lead Lag Lead Lag Lead Lag Lag Lead Lag Lag <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20.0</td> <td>20.0</td> <td>20.0</td> <td></td> <td></td> <td></td>								20.0	20.0	20.0			
Total Split (%) 52.9% 52.9% 52.9% 52.9% 35.3% 35.3% 35.3% 11.8% 47.1% Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Recall Mode None None None Min Min Min	Minimum Split (s)												
Yellow Time (s) 3.3 3.3 3.5 3.5 3.7 3.7 3.7 3.0 3.7 All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lag Lead Recall Mode None None None Min Min Min Min	Total Split (s)												
All-Red Time (s) 3.0 3.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lead Recall Mode None None None Min Min Min Min													
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.3 4.5 4.5 5.7 5.7 4.0 5.7 Lead/Lag Lag Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None None None Min Min None Min	Yellow Time (s)		3.3		3.5	3.5		3.7		3.7	3.0		
Total Lost Time (s)6.34.54.55.75.74.05.7Lead/LagLagLagLagLagLagLeadLead-Lag Optimize?YesYesYesYesRecall ModeNoneNoneNoneMinMinMin		3.0						2.0					
Lead/LagLagLagLagLagLeadLead-Lag Optimize?YesYesYesYesRecall ModeNoneNoneNoneMinMinNoneMin	Lost Time Adjust (s)									0.0	0.0	0.0	
Lead-Lag Optimize?YesYesYesRecall ModeNoneNoneNoneMinMinNoneMin	. ,		6.3		4.5	4.5				5.7		5.7	
Recall Mode None None None Min Min Min None Min								-	•	•			
Act Effct Green (s) 18.0 19.9 19.9 24.7 24.7 5.9 26.2		None						Min					
	Act Effct Green (s)		18.0		19.9	19.9			24.7	24.7	5.9	26.2	

VSMP TIA 2040 Total Conditions PM Peak Hour (East Sumanik Closed) $\rm CQ$

Lanes, Volumes, Timings 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

	۶	-	\mathbf{F}	∢	←	•	1	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Actuated g/C Ratio		0.32		0.35	0.35			0.44	0.44	0.10	0.46	
v/c Ratio		0.75		0.30	0.09			0.64	0.23	0.07	0.53	
Control Delay		24.8		15.8	8.9			20.0	3.9	29.2	10.1	
Queue Delay		0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay		24.8		15.8	8.9			20.0	3.9	29.2	10.1	
LOS		С		В	А			В	А	С	В	
Approach Delay		24.8			13.4			16.2			10.4	
Approach LOS		С			В			В			В	
Queue Length 50th (m)		26.3		7.2	2.2			21.7	0.0	1.2	21.3	
Queue Length 95th (m)		62.7		20.4	9.2			#74.6	12.9	7.1	51.8	
Internal Link Dist (m)		98.4			1117.1			865.8			380.2	
Turn Bay Length (m)									175.0	130.0		
Base Capacity (vph)		1037		753	1317			973	815	195	2189	
Starvation Cap Reductn		0		0	0			0	0	0	0	
Spillback Cap Reductn		0		0	0			0	0	0	0	
Storage Cap Reductn		0		0	0			0	0	0	0	
Reduced v/c Ratio		0.36		0.14	0.04			0.63	0.23	0.07	0.41	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 56.6												
Natural Cycle: 85												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.75												
Intersection Signal Delay: 15	5.1			lr	ntersection	LOS: B						
Intersection Capacity Utilizat	ion 81.9%			IC	CU Level o	of Service	e D					
Analysis Period (min) 15												
# 95th percentile volume e			eue may l	be longer	ſ							
Queue shown is maximur	n after two	cycles.										

Splits and Phases: 9: Alaska Highway & Internal Rd (Range Rd Extension)/Range Road

			<u></u> ø₄
40 s			45 s
Ø5	₫ ø6		₩ Ø8
10 s	30 s		45 s

HCM Unsignalized Intersection Capacity Analysis 4: Valleyview Dr & Sumanik Drive

	≯	~	•	Ť	Ŧ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Υ.			र्स	ef 🔰		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	51	31	76	50	25	18	
Future Volume (vph)	51	31	76	50	25	18	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	55	34	83	54	27	20	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	89	137	47				
Volume Left (vph)	55	83	0				
Volume Right (vph)	34	0	20				
Hadj (s)	-0.07	0.16	-0.22				
Departure Headway (s)	4.2	4.3	4.0				
Degree Utilization, x	0.10	0.16	0.05				
Capacity (veh/h)	813	811	866				
Control Delay (s)	7.7	8.1	7.2				
Approach Delay (s)	7.7	8.1	7.2				
Approach LOS	А	А	А				
Intersection Summary							
Delay			7.9				
Level of Service			А				
Intersection Capacity Utiliza	ation		24.9%	IC	U Level o	of Service	А
Analysis Period (min)			15				

*

HCM Unsignalized Intersection Capacity Analysis 3: Internal Rd (McIntyre Dr Extension) & Internal Rd (Range Rd Extenstion)

	-	\mathbf{r}	∢	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	eî			र्भ	Y		
Traffic Volume (veh/h)	149	0	79	343	0	49	
Future Volume (Veh/h)	149	0	79	343	0	49	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	162	0	86	373	0	53	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)				356			
pX, platoon unblocked							
vC, conflicting volume			162		707	162	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			162		707	162	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			94		100	94	
cM capacity (veh/h)			1417		377	883	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	162	459	53				
Volume Left	0	459	0				
Volume Right	0	0	53				
cSH	1700	1417	883				
Volume to Capacity	0.10	0.06	0.06				
Queue Length 95th (m)	0.10	1.5	1.5				
Control Delay (s)	0.0	1.9	9.3				
Lane LOS	0.0						
	0.0	A 1.9	A 9.3				
Approach Delay (s) Approach LOS	0.0	1.9					
Approach LOS			А				
Intersection Summary							
Average Delay			2.0				
Intersection Capacity Utilization	tion		43.6%	IC	U Level o	f Service	
Analysis Period (min)			15				

APPENDIX H – VSMP TRANSPORTATION CONCEPT PLAN

